• 1. Strahlensatz Verhältnisse
  • Deliah Herbstritt
  • 21.07.2020
  • Mathematik
  • Flächen
  • R
  • 9
  • Einzelarbeit
  • Arbeitsblatt
Um die Lizenzinformationen zu sehen, klicken Sie bitte den gewünschten Inhalt an.
  • 1
    Kreuze die richtigen Verhältnisse an! Es können auch mehrere Verhältnisse richtig sein.

    richtig

    falsch


    SBSA\gdef\cloze#1{\colorbox{none}{\color{transparent}{\large{$\displaystyle #1$}}}} \frac{\overline{SB}}{\overline{SA}} = SDSC\gdef\cloze#1{\colorbox{none}{\color{transparent}{\large{$\displaystyle #1$}}}} \frac{\overline{SD}}{\overline{SC}}
    SASC\gdef\cloze#1{\colorbox{none}{\color{transparent}{\large{$\displaystyle #1$}}}} \frac{\overline{SA}}{\overline{SC}} = SBSA\gdef\cloze#1{\colorbox{none}{\color{transparent}{\large{$\displaystyle #1$}}}} \frac{\overline{SB}}{\overline{SA}}
    ABCD\gdef\cloze#1{\colorbox{none}{\color{transparent}{\large{$\displaystyle #1$}}}} \frac{\overline{AB}}{\overline{CD}} = SASC\gdef\cloze#1{\colorbox{none}{\color{transparent}{\large{$\displaystyle #1$}}}} \frac{\overline{SA}}{\overline{SC}}

    richtig

    falsch

    SVSB\gdef\cloze#1{\colorbox{none}{\color{transparent}{\large{$\displaystyle #1$}}}} \frac{\overline{SV}}{\overline{SB}} = ABVW\gdef\cloze#1{\colorbox{none}{\color{transparent}{\large{$\displaystyle #1$}}}} \frac{\overline{AB}}{\overline{VW}}
    SVSB\gdef\cloze#1{\colorbox{none}{\color{transparent}{\large{$\displaystyle #1$}}}} \frac{\overline{SV}}{\overline{SB}} = VWAB\gdef\cloze#1{\colorbox{none}{\color{transparent}{\large{$\displaystyle #1$}}}} \frac{\overline{VW}}{\overline{AB}}
    SASB\gdef\cloze#1{\colorbox{none}{\color{transparent}{\large{$\displaystyle #1$}}}} \frac{\overline{SA}}{\overline{SB}} = SVSW\gdef\cloze#1{\colorbox{none}{\color{transparent}{\large{$\displaystyle #1$}}}} \frac{\overline{SV}}{\overline{SW}}
    2
    Ergänze die Verhältnisse und finde 5 weitere Verhältnisse!
    • da=e\gdef\cloze#1{\colorbox{none}{\color{transparent}{\large{$\displaystyle #1$}}}} \frac{d}{a}= \frac{e}{}
      \gdef\cloze#1{\colorbox{none}{\color{transparent}{\large{$\displaystyle #1$}}}} \quad
    • ba=c\gdef\cloze#1{\colorbox{none}{\color{transparent}{\large{$\displaystyle #1$}}}} \frac{b}{a}= \frac{c}{}
      \gdef\cloze#1{\colorbox{none}{\color{transparent}{\large{$\displaystyle #1$}}}} \quad
    • bc=e\gdef\cloze#1{\colorbox{none}{\color{transparent}{\large{$\displaystyle #1$}}}} \frac{b}{c}= \frac{e}{}
      \gdef\cloze#1{\colorbox{none}{\color{transparent}{\large{$\displaystyle #1$}}}} \quad
    • \gdef\cloze#1{\colorbox{none}{\color{transparent}{\large{$\displaystyle #1$}}}} \quad
      \gdef\cloze#1{\colorbox{none}{\color{transparent}{\large{$\displaystyle #1$}}}} \quad
    • \gdef\cloze#1{\colorbox{none}{\color{transparent}{\large{$\displaystyle #1$}}}} \quad
      \gdef\cloze#1{\colorbox{none}{\color{transparent}{\large{$\displaystyle #1$}}}} \quad
    • \gdef\cloze#1{\colorbox{none}{\color{transparent}{\large{$\displaystyle #1$}}}} \quad
      \gdef\cloze#1{\colorbox{none}{\color{transparent}{\large{$\displaystyle #1$}}}} \quad
    • \gdef\cloze#1{\colorbox{none}{\color{transparent}{\large{$\displaystyle #1$}}}} \quad
      \gdef\cloze#1{\colorbox{none}{\color{transparent}{\large{$\displaystyle #1$}}}} \quad
    • \gdef\cloze#1{\colorbox{none}{\color{transparent}{\large{$\displaystyle #1$}}}} \quad
      \gdef\cloze#1{\colorbox{none}{\color{transparent}{\large{$\displaystyle #1$}}}} \quad