• Brüche richtig erkennen II
  • helen.winterhalter
  • 17.05.2019
  • Mathematik
  • Bruchrechnen
  • M
  • 5
  • Einzelarbeit
  • Arbeitsblatt
Um die Lizenzinformationen zu sehen, klicken Sie bitte den gewünschten Inhalt an.
1
Welcher Bruch ist hier dargestellt? Schreibe den Bruch unter die jeweilige Grafik.

38\gdef\cloze#1{\colorbox{none}{\color{transparent}{\large{$\displaystyle #1$}}}} \cloze{\frac{3}{8}}

310\gdef\cloze#1{\colorbox{none}{\color{transparent}{\large{$\displaystyle #1$}}}} \cloze{\frac{3}{10}}

616\gdef\cloze#1{\colorbox{none}{\color{transparent}{\large{$\displaystyle #1$}}}} \cloze{\frac{6}{16}}

66\gdef\cloze#1{\colorbox{none}{\color{transparent}{\large{$\displaystyle #1$}}}} \cloze{\frac{6}{6}}

416\gdef\cloze#1{\colorbox{none}{\color{transparent}{\large{$\displaystyle #1$}}}} \cloze{\frac{4}{16}}

816\gdef\cloze#1{\colorbox{none}{\color{transparent}{\large{$\displaystyle #1$}}}} \cloze{\frac{8}{16}}

26\gdef\cloze#1{\colorbox{none}{\color{transparent}{\large{$\displaystyle #1$}}}} \cloze{\frac{2}{6}}

616\gdef\cloze#1{\colorbox{none}{\color{transparent}{\large{$\displaystyle #1$}}}} \cloze{\frac{6}{16}}

210\gdef\cloze#1{\colorbox{none}{\color{transparent}{\large{$\displaystyle #1$}}}} \cloze{\frac{2}{10}}

1120\gdef\cloze#1{\colorbox{none}{\color{transparent}{\large{$\displaystyle #1$}}}} \cloze{\frac{11}{20}}

1020\gdef\cloze#1{\colorbox{none}{\color{transparent}{\large{$\displaystyle #1$}}}} \cloze{\frac{10}{20}}

516\gdef\cloze#1{\colorbox{none}{\color{transparent}{\large{$\displaystyle #1$}}}} \cloze{\frac{5}{16}}