• Größer oder kleiner? III
  • helen.winterhalter
  • 17.05.2019
  • Mathematik
  • Bruchrechnen
  • M (Mindeststandard)
  • 5
  • Einzelarbeit
  • Arbeitsblatt
Um die Lizenzinformationen zu sehen, klicken Sie bitte den gewünschten Inhalt an.
1
Schreibe unter jede Grafik den richtigen Bruch und füge < oder > zwischen die zwei Grafiken ein.





















14\gdef\cloze#1{\colorbox{none}{\color{transparent}{\large{$\displaystyle #1$}}}} \cloze{\frac{1}{4}}

116\gdef\cloze#1{\colorbox{none}{\color{transparent}{\large{$\displaystyle #1$}}}} \cloze{\frac{1}{16}}

816\gdef\cloze#1{\colorbox{none}{\color{transparent}{\large{$\displaystyle #1$}}}} \cloze{\frac{8}{16}}

88\gdef\cloze#1{\colorbox{none}{\color{transparent}{\large{$\displaystyle #1$}}}} \cloze{\frac{8}{8}}

12\gdef\cloze#1{\colorbox{none}{\color{transparent}{\large{$\displaystyle #1$}}}} \cloze{\frac{1}{2}}

14\gdef\cloze#1{\colorbox{none}{\color{transparent}{\large{$\displaystyle #1$}}}} \cloze{\frac{1}{4}}

2
Vergleiche die zwei Brüche miteinander. Welcher Bruch ist größer? Setze die Zeichen < und > richtig in die grau gefärbten Lücken ein.


a) \gdef\cloze#1{\colorbox{none}{\color{transparent}{\large{$\displaystyle #1$}}}} \quad 24\gdef\cloze#1{\colorbox{none}{\color{transparent}{\large{$\displaystyle #1$}}}} \dfrac {2}{4} 34\gdef\cloze#1{\colorbox{none}{\color{transparent}{\large{$\displaystyle #1$}}}} \dfrac {3}{4}


d) \gdef\cloze#1{\colorbox{none}{\color{transparent}{\large{$\displaystyle #1$}}}} \quad 19\gdef\cloze#1{\colorbox{none}{\color{transparent}{\large{$\displaystyle #1$}}}} \dfrac {1}{9} 110\gdef\cloze#1{\colorbox{none}{\color{transparent}{\large{$\displaystyle #1$}}}} \dfrac {1}{10}


g) \gdef\cloze#1{\colorbox{none}{\color{transparent}{\large{$\displaystyle #1$}}}} \quad 23\gdef\cloze#1{\colorbox{none}{\color{transparent}{\large{$\displaystyle #1$}}}} \dfrac {2}{3} 13\gdef\cloze#1{\colorbox{none}{\color{transparent}{\large{$\displaystyle #1$}}}} \dfrac {1}{3}


b) \gdef\cloze#1{\colorbox{none}{\color{transparent}{\large{$\displaystyle #1$}}}} \quad 120\gdef\cloze#1{\colorbox{none}{\color{transparent}{\large{$\displaystyle #1$}}}} \dfrac {1}{20} 119\gdef\cloze#1{\colorbox{none}{\color{transparent}{\large{$\displaystyle #1$}}}} \dfrac {1}{19}


e) \gdef\cloze#1{\colorbox{none}{\color{transparent}{\large{$\displaystyle #1$}}}} \quad 121\gdef\cloze#1{\colorbox{none}{\color{transparent}{\large{$\displaystyle #1$}}}} \dfrac {1}{21} 122\gdef\cloze#1{\colorbox{none}{\color{transparent}{\large{$\displaystyle #1$}}}} \dfrac {1}{22}


h) \gdef\cloze#1{\colorbox{none}{\color{transparent}{\large{$\displaystyle #1$}}}} \quad 816\gdef\cloze#1{\colorbox{none}{\color{transparent}{\large{$\displaystyle #1$}}}} \dfrac {8}{16} 716\gdef\cloze#1{\colorbox{none}{\color{transparent}{\large{$\displaystyle #1$}}}} \dfrac {7}{16}


c) \gdef\cloze#1{\colorbox{none}{\color{transparent}{\large{$\displaystyle #1$}}}} \quad 7200\gdef\cloze#1{\colorbox{none}{\color{transparent}{\large{$\displaystyle #1$}}}} \dfrac {7}{200} 3200\gdef\cloze#1{\colorbox{none}{\color{transparent}{\large{$\displaystyle #1$}}}} \dfrac {3}{200}


f) \gdef\cloze#1{\colorbox{none}{\color{transparent}{\large{$\displaystyle #1$}}}} \quad 1900\gdef\cloze#1{\colorbox{none}{\color{transparent}{\large{$\displaystyle #1$}}}} \dfrac {1}{900} 1901\gdef\cloze#1{\colorbox{none}{\color{transparent}{\large{$\displaystyle #1$}}}} \dfrac {1}{901}


i) \gdef\cloze#1{\colorbox{none}{\color{transparent}{\large{$\displaystyle #1$}}}} \quad 1300\gdef\cloze#1{\colorbox{none}{\color{transparent}{\large{$\displaystyle #1$}}}} \dfrac {1}{300} 1200\gdef\cloze#1{\colorbox{none}{\color{transparent}{\large{$\displaystyle #1$}}}} \dfrac {1}{200}