AB: Aufgaben zum zweiseitigen Hebel

Physik 8

Im Versuch hast Du den zweiseitigen Hebel kennengelernt! Dort hast Du herausgefunden, dass auf <u>beiden Seiten</u> das <u>Produkt</u> der Kraft und des Hebelarms (also der Abstand der Kraft vom Drehpunkt in der Mitte) **gleich groß** sein muss.

Es gilt:
$$F_1 \cdot l_1 = F_2 \cdot l_2$$

Berechne das Produkt aus Kraft und Hebelarm und überlege Dir den fehlenden Wert auf der jeweils anderen Seite!

linke Seite			rechte Seite		
Kraft F ₁ in N	Hebelarm r ₁ in cm	Produkt F ₁ · r ₁ in N·cm	Kraft F ₂ in N	Hebelarm r ₂ in cm	Produkt F ₂ · r ₂ in N·cm
2 N	<u>3 cm</u>		2 N		
8 N			8 N	10 cm	
6 N	4 cm			4 cm	
6 N	<u>5 cm</u>		3 N		
4 N	10 cm		2 N		
	8 cm		8 N	16 cm	
10 N	<u>4 cm</u>			8 cm	
5 N	<u>6 cm</u>			2 cm	
	15 cm		9 N	5 cm	
	<u>8 cm</u>		6 N	4 cm	

(1) Berechne auf beiden Seiten die Drehmomente und gib an, wohin der Hebel kippt!

a) links:
$$F_1=100~N$$
, $r_1=5~m$, $F_2=50~N$, $r_2=10~m$ rechts: F3 = 90 N, r 3 = 10 m

b) links:
$$F_1=30~N$$
, $r_1=4~cm$, $F_2=15~N$, $r_2=10~cm$ rechts: $F_3=40~N$, $r_3=5~cm$, $F_2=5~N$, $r_2=20~cm$

