• Bruchteile von Gewichten
  • helen.winterhalter
  • 16.05.2019
  • Mathematik
  • Bruchrechnen
  • R
  • 5
  • Einzelarbeit
  • Arbeitsblatt
Um die Lizenzinformationen zu sehen, klicken Sie bitte den gewünschten Inhalt an.
1
Wie viel ist noch in der Packung? Wandle den Bruch in die gesuchte Einheit um.

b)

c)

a)

14\gdef\cloze#1{{\raisebox{-.05em}{\colorbox{none}{\color{526060}{\large{$\displaystyle #1$}}}}}} \cloze{\frac{1}{4}}

12\gdef\cloze#1{{\raisebox{-.05em}{\colorbox{none}{\color{526060}{\large{$\displaystyle #1$}}}}}} \cloze{\frac{1}{2}}

15\gdef\cloze#1{{\raisebox{-.05em}{\colorbox{none}{\color{526060}{\large{$\displaystyle #1$}}}}}} \cloze{\frac{1}{5}}

= 250 g

= 500 g

= 200 g

kg

kg

kg

d)

e)

f)

25\gdef\cloze#1{{\raisebox{-.05em}{\colorbox{none}{\color{526060}{\large{$\displaystyle #1$}}}}}} \cloze{\frac{2}{5}}

45\gdef\cloze#1{{\raisebox{-.05em}{\colorbox{none}{\color{526060}{\large{$\displaystyle #1$}}}}}} \cloze{\frac{4}{5}}

34\gdef\cloze#1{{\raisebox{-.05em}{\colorbox{none}{\color{526060}{\large{$\displaystyle #1$}}}}}} \cloze{\frac{3}{4}}

= 400 g

= 800 g

= 750 g

kg

kg

kg

g)

h)

i)

12\gdef\cloze#1{{\raisebox{-.05em}{\colorbox{none}{\color{526060}{\large{$\displaystyle #1$}}}}}} \cloze{\frac{1}{2}}

34\gdef\cloze#1{{\raisebox{-.05em}{\colorbox{none}{\color{526060}{\large{$\displaystyle #1$}}}}}} \cloze{\frac{3}{4}}

14\gdef\cloze#1{{\raisebox{-.05em}{\colorbox{none}{\color{526060}{\large{$\displaystyle #1$}}}}}} \cloze{\frac{1}{4}}

= 500 mg

= 750 mg

= 250 mg

g

g

g

2
Wie voll ist die Packung noch? Färbe die Grafik der Angabe entsprechend ein. Wie kann man die Angabe auch als Anteil darstellen?

a) \gdef\cloze#1{{\raisebox{-.05em}{\colorbox{none}{\color{526060}{\large{$\displaystyle #1$}}}}}} \hspace*{0.26cm} 500 g

b) \gdef\cloze#1{{\raisebox{-.05em}{\colorbox{none}{\color{526060}{\large{$\displaystyle #1$}}}}}} \hspace*{0.26cm} 250 g

dfrac14\gdef\cloze#1{{\raisebox{-.05em}{\colorbox{none}{\color{transparent}{\large{$\displaystyle #1$}}}}}} dfrac{1}{4} kg

dfrac12\gdef\cloze#1{{\raisebox{-.05em}{\colorbox{none}{\color{transparent}{\large{$\displaystyle #1$}}}}}} dfrac{1}{2} kg

c) \gdef\cloze#1{{\raisebox{-.05em}{\colorbox{none}{\color{526060}{\large{$\displaystyle #1$}}}}}} \hspace*{0.26cm} 400 g

c) \gdef\cloze#1{{\raisebox{-.05em}{\colorbox{none}{\color{526060}{\large{$\displaystyle #1$}}}}}} \hspace*{0.26cm} 750 g

dfrac25\gdef\cloze#1{{\raisebox{-.05em}{\colorbox{none}{\color{transparent}{\large{$\displaystyle #1$}}}}}} dfrac{2}{5} kg

dfrac34\gdef\cloze#1{{\raisebox{-.05em}{\colorbox{none}{\color{transparent}{\large{$\displaystyle #1$}}}}}} dfrac{3}{4} kg

3
Wandle um!

a) \gdef\cloze#1{{\raisebox{-.05em}{\colorbox{none}{\color{526060}{\large{$\displaystyle #1$}}}}}} \hspace*{0.26cm} 500 mg = dfrac12\gdef\cloze#1{{\raisebox{-.05em}{\colorbox{none}{\color{transparent}{\large{$\displaystyle #1$}}}}}} dfrac{1}{2} g


c) \gdef\cloze#1{{\raisebox{-.05em}{\colorbox{none}{\color{526060}{\large{$\displaystyle #1$}}}}}} \hspace*{0.26cm} 500 kg = dfrac12\gdef\cloze#1{{\raisebox{-.05em}{\colorbox{none}{\color{transparent}{\large{$\displaystyle #1$}}}}}} dfrac{1}{2} t

b) \gdef\cloze#1{{\raisebox{-.05em}{\colorbox{none}{\color{526060}{\large{$\displaystyle #1$}}}}}} \hspace*{0.26cm} 200 g = dfrac15\gdef\cloze#1{{\raisebox{-.05em}{\colorbox{none}{\color{transparent}{\large{$\displaystyle #1$}}}}}} dfrac{1}{5} kg

d) \gdef\cloze#1{{\raisebox{-.05em}{\colorbox{none}{\color{526060}{\large{$\displaystyle #1$}}}}}} \hspace*{0.26cm} 750 kg = dfrac34\gdef\cloze#1{{\raisebox{-.05em}{\colorbox{none}{\color{transparent}{\large{$\displaystyle #1$}}}}}} dfrac{3}{4} t