• Größer oder kleiner? I
  • helen.winterhalter
  • 17.05.2019
  • Mathematik
  • Bruchrechnen
  • M
  • 5
  • Einzelarbeit
  • Arbeitsblatt
Um die Lizenzinformationen zu sehen, klicken Sie bitte den gewünschten Inhalt an.
1
Schreibe unter jede Grafik den richtigen Bruch und füge erneut < oder > zwischen die zwei Grafiken ein.





















<

34\gdef\cloze#1{\colorbox{none}{\color{transparent}{\large{$\displaystyle #1$}}}} \cloze{\frac{3}{4}}

14\gdef\cloze#1{\colorbox{none}{\color{transparent}{\large{$\displaystyle #1$}}}} \cloze{\frac{1}{4}}

>

112\gdef\cloze#1{\colorbox{none}{\color{transparent}{\large{$\displaystyle #1$}}}} \cloze{\frac{1}{12}}

110\gdef\cloze#1{\colorbox{none}{\color{transparent}{\large{$\displaystyle #1$}}}} \cloze{\frac{1}{10}}

<

620\gdef\cloze#1{\colorbox{none}{\color{transparent}{\large{$\displaystyle #1$}}}} \cloze{\frac{6}{20}}

520\gdef\cloze#1{\colorbox{none}{\color{transparent}{\large{$\displaystyle #1$}}}} \cloze{\frac{5}{20}}

2
Vergleiche die zwei Brüche miteinander. Welcher Bruch ist größer? Setze die Zeichen < und > richtig in die grau gefärbten Lücken ein.

c) \gdef\cloze#1{\colorbox{none}{\color{transparent}{\large{$\displaystyle #1$}}}} \quad 1100\gdef\cloze#1{\colorbox{none}{\color{transparent}{\large{$\displaystyle #1$}}}} \dfrac {1}{100} > 1101\gdef\cloze#1{\colorbox{none}{\color{transparent}{\large{$\displaystyle #1$}}}} \dfrac {1}{101}


f) \gdef\cloze#1{\colorbox{none}{\color{transparent}{\large{$\displaystyle #1$}}}} \quad 1100\gdef\cloze#1{\colorbox{none}{\color{transparent}{\large{$\displaystyle #1$}}}} \dfrac {1}{100} < 4100\gdef\cloze#1{\colorbox{none}{\color{transparent}{\large{$\displaystyle #1$}}}} \dfrac {4}{100}


i) \gdef\cloze#1{\colorbox{none}{\color{transparent}{\large{$\displaystyle #1$}}}} \quad 1900\gdef\cloze#1{\colorbox{none}{\color{transparent}{\large{$\displaystyle #1$}}}} \dfrac {1}{900} < 1800\gdef\cloze#1{\colorbox{none}{\color{transparent}{\large{$\displaystyle #1$}}}} \dfrac {1}{800}

b) \gdef\cloze#1{\colorbox{none}{\color{transparent}{\large{$\displaystyle #1$}}}} \quad 13\gdef\cloze#1{\colorbox{none}{\color{transparent}{\large{$\displaystyle #1$}}}} \dfrac {1}{3} > 14\gdef\cloze#1{\colorbox{none}{\color{transparent}{\large{$\displaystyle #1$}}}} \dfrac {1}{4}


e) \gdef\cloze#1{\colorbox{none}{\color{transparent}{\large{$\displaystyle #1$}}}} \quad 38\gdef\cloze#1{\colorbox{none}{\color{transparent}{\large{$\displaystyle #1$}}}} \dfrac {3}{8} < 48\gdef\cloze#1{\colorbox{none}{\color{transparent}{\large{$\displaystyle #1$}}}} \dfrac {4}{8}


h) \gdef\cloze#1{\colorbox{none}{\color{transparent}{\large{$\displaystyle #1$}}}} \quad 110\gdef\cloze#1{\colorbox{none}{\color{transparent}{\large{$\displaystyle #1$}}}} \dfrac {1}{10} < 14\gdef\cloze#1{\colorbox{none}{\color{transparent}{\large{$\displaystyle #1$}}}} \dfrac {1}{4}

a) \gdef\cloze#1{\colorbox{none}{\color{transparent}{\large{$\displaystyle #1$}}}} \quad 12\gdef\cloze#1{\colorbox{none}{\color{transparent}{\large{$\displaystyle #1$}}}} \dfrac {1}{2} > 13\gdef\cloze#1{\colorbox{none}{\color{transparent}{\large{$\displaystyle #1$}}}} \dfrac {1}{3}


d) \gdef\cloze#1{\colorbox{none}{\color{transparent}{\large{$\displaystyle #1$}}}} \quad 79\gdef\cloze#1{\colorbox{none}{\color{transparent}{\large{$\displaystyle #1$}}}} \dfrac {7}{9} > 49\gdef\cloze#1{\colorbox{none}{\color{transparent}{\large{$\displaystyle #1$}}}} \dfrac {4}{9}


g) \gdef\cloze#1{\colorbox{none}{\color{transparent}{\large{$\displaystyle #1$}}}} \quad 13\gdef\cloze#1{\colorbox{none}{\color{transparent}{\large{$\displaystyle #1$}}}} \dfrac {1}{3} < 11\gdef\cloze#1{\colorbox{none}{\color{transparent}{\large{$\displaystyle #1$}}}} \dfrac {1}{1}