• Größer oder kleiner? II
  • Bäumer
  • 12.09.2021
  • Mathematik
  • Bruchrechnen
  • M
  • 5
  • Einzelarbeit
  • Arbeitsblatt
Um die Lizenzinformationen zu sehen, klicken Sie bitte den gewünschten Inhalt an.
1
Schreibe unter jede Grafik den richtigen Bruch und füge <, > oder = zwischen die zwei Grafiken ein.





















<

12\gdef\cloze#1{\colorbox{none}{\color{transparent}{\large{$\displaystyle #1$}}}} \dfrac{1}{2}

15\gdef\cloze#1{\colorbox{none}{\color{transparent}{\large{$\displaystyle #1$}}}} \dfrac{1}{5}

<

23\gdef\cloze#1{\colorbox{none}{\color{transparent}{\large{$\displaystyle #1$}}}} \dfrac{2}{3}

13\gdef\cloze#1{\colorbox{none}{\color{transparent}{\large{$\displaystyle #1$}}}} \dfrac{1}{3}

=

24\gdef\cloze#1{\colorbox{none}{\color{transparent}{\large{$\displaystyle #1$}}}} \dfrac{2}{4}

24\gdef\cloze#1{\colorbox{none}{\color{transparent}{\large{$\displaystyle #1$}}}} \dfrac{2}{4}

2
Vergleiche die zwei Brüche miteinander. Welcher Bruch ist größer? Setze die Zeichen < und > richtig in die grau gefärbten Lücken ein.


c) \gdef\cloze#1{\colorbox{none}{\color{transparent}{\large{$\displaystyle #1$}}}} \quad 1400\gdef\cloze#1{\colorbox{none}{\color{transparent}{\large{$\displaystyle #1$}}}} \dfrac {1}{400} > 1500\gdef\cloze#1{\colorbox{none}{\color{transparent}{\large{$\displaystyle #1$}}}} \dfrac {1}{500}


f) \gdef\cloze#1{\colorbox{none}{\color{transparent}{\large{$\displaystyle #1$}}}} \quad 1100\gdef\cloze#1{\colorbox{none}{\color{transparent}{\large{$\displaystyle #1$}}}} \dfrac {1}{100} > 1101\gdef\cloze#1{\colorbox{none}{\color{transparent}{\large{$\displaystyle #1$}}}} \dfrac {1}{101}


i) \gdef\cloze#1{\colorbox{none}{\color{transparent}{\large{$\displaystyle #1$}}}} \quad 1100\gdef\cloze#1{\colorbox{none}{\color{transparent}{\large{$\displaystyle #1$}}}} \dfrac {1}{100} < 199\gdef\cloze#1{\colorbox{none}{\color{transparent}{\large{$\displaystyle #1$}}}} \dfrac {1}{99}


b) \gdef\cloze#1{\colorbox{none}{\color{transparent}{\large{$\displaystyle #1$}}}} \quad 139\gdef\cloze#1{\colorbox{none}{\color{transparent}{\large{$\displaystyle #1$}}}} \dfrac {1}{39} < 112\gdef\cloze#1{\colorbox{none}{\color{transparent}{\large{$\displaystyle #1$}}}} \dfrac {1}{12}


e) \gdef\cloze#1{\colorbox{none}{\color{transparent}{\large{$\displaystyle #1$}}}} \quad 110\gdef\cloze#1{\colorbox{none}{\color{transparent}{\large{$\displaystyle #1$}}}} \dfrac {1}{10} > 111\gdef\cloze#1{\colorbox{none}{\color{transparent}{\large{$\displaystyle #1$}}}} \dfrac {1}{11}


h) \gdef\cloze#1{\colorbox{none}{\color{transparent}{\large{$\displaystyle #1$}}}} \quad 315\gdef\cloze#1{\colorbox{none}{\color{transparent}{\large{$\displaystyle #1$}}}} \dfrac {3}{15} > 215\gdef\cloze#1{\colorbox{none}{\color{transparent}{\large{$\displaystyle #1$}}}} \dfrac {2}{15}


a) \gdef\cloze#1{\colorbox{none}{\color{transparent}{\large{$\displaystyle #1$}}}} \quad 34\gdef\cloze#1{\colorbox{none}{\color{transparent}{\large{$\displaystyle #1$}}}} \dfrac {3}{4} < 44\gdef\cloze#1{\colorbox{none}{\color{transparent}{\large{$\displaystyle #1$}}}} \dfrac {4}{4}


d) \gdef\cloze#1{\colorbox{none}{\color{transparent}{\large{$\displaystyle #1$}}}} \quad 17\gdef\cloze#1{\colorbox{none}{\color{transparent}{\large{$\displaystyle #1$}}}} \dfrac {1}{7} > 110\gdef\cloze#1{\colorbox{none}{\color{transparent}{\large{$\displaystyle #1$}}}} \dfrac {1}{10}


g) \gdef\cloze#1{\colorbox{none}{\color{transparent}{\large{$\displaystyle #1$}}}} \quad 67\gdef\cloze#1{\colorbox{none}{\color{transparent}{\large{$\displaystyle #1$}}}} \dfrac {6}{7} > 57\gdef\cloze#1{\colorbox{none}{\color{transparent}{\large{$\displaystyle #1$}}}} \dfrac {5}{7}