# INFO: Normalen- und Koordinatengleichung e...

Mathematik Vektoren 12

Sieh dir das Video an.

Normalen\- und Koordinatengleichung einer Ebene



## Beispielaufgabe

Gegeben ist die Ebene 
$$E\colon \overrightarrow{x} = \left( \begin{array}{c} 1 \\ 0 \\ 3 \end{array} \right) + r\cdot \left( \begin{array}{c} -1 \\ 0 \\ -1 \end{array} \right) + s\cdot \left( \begin{array}{c} -5 \\ 2 \\ -2 \end{array} \right).$$

Wandle die Ebene in eine Normalen- bzw. Koordinatengleichung um.



#### (🖋) Rechenweg

Die **Normalenform** einer Ebene lautet allgemein: 
$$\left(egin{pmatrix}x_1\\x_2\\x_3\end{pmatrix}-egin{pmatrix}p_1\\p_2\\p_3\end{pmatrix}
ight)\circegin{pmatrix}n_1\\n_2\\n_3\end{pmatrix}=0$$

Ein Normalenvektor der Ebene wird berechnet, indem das Vektorprodukt der beiden Spannvektoren berechnet wird:

$$\overrightarrow{n} = \left( egin{array}{c} -1 \ 0 \ -1 \end{array} 
ight) imes \left( egin{array}{c} -5 \ 2 \ -2 \end{array} 
ight) = \left( egin{array}{c} 2 \ 3 \ -2 \end{array} 
ight)$$

Da der Stützvektor A(1/0/3) in der Ebene liegt lautet die Normalengleichung der Ebene

$$\left(egin{pmatrix} x_1 \ x_2 \ x_3 \end{pmatrix} - egin{pmatrix} 1 \ 0 \ 3 \end{pmatrix} 
ight) \circ egin{pmatrix} 2 \ 3 \ -2 \end{pmatrix} = 0$$

Als Koordinatengleichung ergibt sich durch Ausmultiplizieren

$$egin{pmatrix} x_1 \ x_2 \ x_3 \end{pmatrix} \circ egin{pmatrix} 2 \ 3 \ -2 \end{pmatrix} - egin{pmatrix} 1 \ 0 \ 3 \end{pmatrix} \circ egin{pmatrix} 2 \ 3 \ -2 \end{pmatrix} = 0$$

$$egin{pmatrix} x_1 \ x_2 \ x_3 \end{pmatrix} \circ \ egin{pmatrix} 2 \ 3 \ -2 \end{pmatrix} = egin{pmatrix} 1 \ 0 \ 3 \end{pmatrix} \circ egin{pmatrix} 2 \ 3 \ -2 \end{pmatrix}$$

$$E \colon 2x_1 + 3x_2 - 2x_3 = -4$$



# INFO: Normalen- und Koordinatengleichung e...

Mathematik Vektoren 12

### Beispielaufgabe

Gegeben ist die Ebene 
$$E\colon \overrightarrow{x}=\left(egin{array}{c}1\\0\\3\end{array}
ight)+r\cdot\left(egin{array}{c}-1\\0\\-1\end{array}
ight)+s\cdot\left(egin{array}{c}-5\\2\\-2\end{array}
ight).$$

Wandle die Ebene in eine Koordinatengleichung um.



## ( Rechenweg

Du kannst die Koordinatengleichung auch ohne Umweg über die Normalengleichung erstellen. Dazu berechnest du ebenfalls zuerst den Normalenvektor der Ebene, indem du das Vektorprodukt der beiden Spannvektoren berechnest:

$$\overrightarrow{n} = \left( egin{array}{c} -1 \ 0 \ -1 \end{array} 
ight) imes \left( egin{array}{c} -5 \ 2 \ -2 \end{array} 
ight) = \left( egin{array}{c} 2 \ 3 \ -2 \end{array} 
ight)$$

Die Koordinaten des Normalenvektors werden in die Koordinatengleichung eingesetzt:

$$E \colon n_1 x_1 + n_2 x_2 + n_3 x_3 = d$$

$$E \colon 2x_1 + 3x_2 - 2x_3 = d$$

Der Stützvektor der Ebene  $\overrightarrow{a}=\left(egin{array}{c}1\\0\\3\end{array}
ight)$  führt zu einem Punkt, der in der Ebene liegt. Seine

Koordinaten können daher für  $x_1$ ,  $x_2$  und  $x_3$  eingesetzt werden, um d zu berechnen:

$$2 \cdot 1 + 3 \cdot 0 - 2 \cdot 3 = d$$
  
 $d = -4$ 

Der Wert von d wird in die Ebenengleichung eingesetzt. Nun liegt die Ebene als Koordinatengleichung vor:

$$E \colon 2x_1 + 3x_2 - 2x_3 = -4$$

