• Brüche erweitern
  • MNWeG
  • 17.01.2022
  • Mathematik
  • Bruchrechnen
  • M (Mindeststandard)
  • 6
  • Einzelarbeit
  • Arbeitsblatt
Um die Lizenzinformationen zu sehen, klicken Sie bitte den gewünschten Inhalt an.

6\gdef\cloze#1{{\raisebox{-.05em}{\colorbox{none}{\color{transparent}{\large{$\displaystyle #1$}}}}}} \cdot6

18\gdef\cloze#1{{\raisebox{-.05em}{\colorbox{none}{\color{transparent}{\large{$\displaystyle #1$}}}}}} 18

3\gdef\cloze#1{{\raisebox{-.05em}{\colorbox{none}{\color{transparent}{\large{$\displaystyle #1$}}}}}} \cdot3

9\gdef\cloze#1{{\raisebox{-.05em}{\colorbox{none}{\color{transparent}{\large{$\displaystyle #1$}}}}}} 9

5\gdef\cloze#1{{\raisebox{-.05em}{\colorbox{none}{\color{transparent}{\large{$\displaystyle #1$}}}}}} \cdot5

15\gdef\cloze#1{{\raisebox{-.05em}{\colorbox{none}{\color{transparent}{\large{$\displaystyle #1$}}}}}} 15

35       10\gdef\cloze#1{{\raisebox{-.05em}{\colorbox{none}{\color{526060}{\large{$\displaystyle #1$}}}}}} \frac{3}{5}\xrightarrow[]{}\frac{\ \ \ \ \ \ \ }{10}
35       10\gdef\cloze#1{{\raisebox{-.05em}{\colorbox{none}{\color{526060}{\large{$\displaystyle #1$}}}}}} \frac{3}{5}\xrightarrow[]{}\frac{\ \ \ \ \ \ \ }{10}
35       10\gdef\cloze#1{{\raisebox{-.05em}{\colorbox{none}{\color{526060}{\large{$\displaystyle #1$}}}}}} \frac{3}{5}\xrightarrow[]{}\frac{\ \ \ \ \ \ \ }{10}

30\gdef\cloze#1{{\raisebox{-.05em}{\colorbox{none}{\color{transparent}{\large{$\displaystyle #1$}}}}}} 30

15\gdef\cloze#1{{\raisebox{-.05em}{\colorbox{none}{\color{transparent}{\large{$\displaystyle #1$}}}}}} 15

25\gdef\cloze#1{{\raisebox{-.05em}{\colorbox{none}{\color{transparent}{\large{$\displaystyle #1$}}}}}} 25

6\gdef\cloze#1{{\raisebox{-.05em}{\colorbox{none}{\color{transparent}{\large{$\displaystyle #1$}}}}}} \cdot6

3\gdef\cloze#1{{\raisebox{-.05em}{\colorbox{none}{\color{transparent}{\large{$\displaystyle #1$}}}}}} \cdot3

5\gdef\cloze#1{{\raisebox{-.05em}{\colorbox{none}{\color{transparent}{\large{$\displaystyle #1$}}}}}} \cdot5

3\gdef\cloze#1{{\raisebox{-.05em}{\colorbox{none}{\color{transparent}{\large{$\displaystyle #1$}}}}}} \cdot3

5\gdef\cloze#1{{\raisebox{-.05em}{\colorbox{none}{\color{transparent}{\large{$\displaystyle #1$}}}}}} \cdot5

12\gdef\cloze#1{{\raisebox{-.05em}{\colorbox{none}{\color{transparent}{\large{$\displaystyle #1$}}}}}} 12

20\gdef\cloze#1{{\raisebox{-.05em}{\colorbox{none}{\color{transparent}{\large{$\displaystyle #1$}}}}}} 20

4\gdef\cloze#1{{\raisebox{-.05em}{\colorbox{none}{\color{transparent}{\large{$\displaystyle #1$}}}}}} \cdot4

16\gdef\cloze#1{{\raisebox{-.05em}{\colorbox{none}{\color{transparent}{\large{$\displaystyle #1$}}}}}} 16

47       10\gdef\cloze#1{{\raisebox{-.05em}{\colorbox{none}{\color{526060}{\large{$\displaystyle #1$}}}}}} \frac{4}{7}\xrightarrow[]{}\frac{\ \ \ \ \ \ \ }{10}
47       10\gdef\cloze#1{{\raisebox{-.05em}{\colorbox{none}{\color{526060}{\large{$\displaystyle #1$}}}}}} \frac{4}{7}\xrightarrow[]{}\frac{\ \ \ \ \ \ \ }{10}
47       10\gdef\cloze#1{{\raisebox{-.05em}{\colorbox{none}{\color{526060}{\large{$\displaystyle #1$}}}}}} \frac{4}{7}\xrightarrow[]{}\frac{\ \ \ \ \ \ \ }{10}

21\gdef\cloze#1{{\raisebox{-.05em}{\colorbox{none}{\color{transparent}{\large{$\displaystyle #1$}}}}}} 21

35\gdef\cloze#1{{\raisebox{-.05em}{\colorbox{none}{\color{transparent}{\large{$\displaystyle #1$}}}}}} 35

28\gdef\cloze#1{{\raisebox{-.05em}{\colorbox{none}{\color{transparent}{\large{$\displaystyle #1$}}}}}} 28

3\gdef\cloze#1{{\raisebox{-.05em}{\colorbox{none}{\color{transparent}{\large{$\displaystyle #1$}}}}}} \cdot3

5\gdef\cloze#1{{\raisebox{-.05em}{\colorbox{none}{\color{transparent}{\large{$\displaystyle #1$}}}}}} \cdot5

4\gdef\cloze#1{{\raisebox{-.05em}{\colorbox{none}{\color{transparent}{\large{$\displaystyle #1$}}}}}} \cdot4

5\gdef\cloze#1{{\raisebox{-.05em}{\colorbox{none}{\color{transparent}{\large{$\displaystyle #1$}}}}}} \cdot5

25\gdef\cloze#1{{\raisebox{-.05em}{\colorbox{none}{\color{transparent}{\large{$\displaystyle #1$}}}}}} 25

7\gdef\cloze#1{{\raisebox{-.05em}{\colorbox{none}{\color{transparent}{\large{$\displaystyle #1$}}}}}} \cdot7

35\gdef\cloze#1{{\raisebox{-.05em}{\colorbox{none}{\color{transparent}{\large{$\displaystyle #1$}}}}}} 35

3\gdef\cloze#1{{\raisebox{-.05em}{\colorbox{none}{\color{transparent}{\large{$\displaystyle #1$}}}}}} \cdot3

15\gdef\cloze#1{{\raisebox{-.05em}{\colorbox{none}{\color{transparent}{\large{$\displaystyle #1$}}}}}} 15

56       10\gdef\cloze#1{{\raisebox{-.05em}{\colorbox{none}{\color{526060}{\large{$\displaystyle #1$}}}}}} \frac{5}{6}\xrightarrow[]{}\frac{\ \ \ \ \ \ \ }{10}
56       10\gdef\cloze#1{{\raisebox{-.05em}{\colorbox{none}{\color{526060}{\large{$\displaystyle #1$}}}}}} \frac{5}{6}\xrightarrow[]{}\frac{\ \ \ \ \ \ \ }{10}
56       10\gdef\cloze#1{{\raisebox{-.05em}{\colorbox{none}{\color{526060}{\large{$\displaystyle #1$}}}}}} \frac{5}{6}\xrightarrow[]{}\frac{\ \ \ \ \ \ \ }{10}

30\gdef\cloze#1{{\raisebox{-.05em}{\colorbox{none}{\color{transparent}{\large{$\displaystyle #1$}}}}}} 30

42\gdef\cloze#1{{\raisebox{-.05em}{\colorbox{none}{\color{transparent}{\large{$\displaystyle #1$}}}}}} 42

3\gdef\cloze#1{{\raisebox{-.05em}{\colorbox{none}{\color{transparent}{\large{$\displaystyle #1$}}}}}} 3

5\gdef\cloze#1{{\raisebox{-.05em}{\colorbox{none}{\color{transparent}{\large{$\displaystyle #1$}}}}}} \cdot5

7\gdef\cloze#1{{\raisebox{-.05em}{\colorbox{none}{\color{transparent}{\large{$\displaystyle #1$}}}}}} \cdot7

3\gdef\cloze#1{{\raisebox{-.05em}{\colorbox{none}{\color{transparent}{\large{$\displaystyle #1$}}}}}} \cdot3

4\gdef\cloze#1{{\raisebox{-.05em}{\colorbox{none}{\color{transparent}{\large{$\displaystyle #1$}}}}}} \cdot4

8\gdef\cloze#1{{\raisebox{-.05em}{\colorbox{none}{\color{transparent}{\large{$\displaystyle #1$}}}}}} 8

9\gdef\cloze#1{{\raisebox{-.05em}{\colorbox{none}{\color{transparent}{\large{$\displaystyle #1$}}}}}} \cdot9

18\gdef\cloze#1{{\raisebox{-.05em}{\colorbox{none}{\color{transparent}{\large{$\displaystyle #1$}}}}}} 18

7\gdef\cloze#1{{\raisebox{-.05em}{\colorbox{none}{\color{transparent}{\large{$\displaystyle #1$}}}}}} \cdot7

14\gdef\cloze#1{{\raisebox{-.05em}{\colorbox{none}{\color{transparent}{\large{$\displaystyle #1$}}}}}} 14

29       10\gdef\cloze#1{{\raisebox{-.05em}{\colorbox{none}{\color{526060}{\large{$\displaystyle #1$}}}}}} \frac{2}{9}\xrightarrow[]{}\frac{\ \ \ \ \ \ \ }{10}
29       10\gdef\cloze#1{{\raisebox{-.05em}{\colorbox{none}{\color{526060}{\large{$\displaystyle #1$}}}}}} \frac{2}{9}\xrightarrow[]{}\frac{\ \ \ \ \ \ \ }{10}
29       10\gdef\cloze#1{{\raisebox{-.05em}{\colorbox{none}{\color{526060}{\large{$\displaystyle #1$}}}}}} \frac{2}{9}\xrightarrow[]{}\frac{\ \ \ \ \ \ \ }{10}

36\gdef\cloze#1{{\raisebox{-.05em}{\colorbox{none}{\color{transparent}{\large{$\displaystyle #1$}}}}}} 36

81\gdef\cloze#1{{\raisebox{-.05em}{\colorbox{none}{\color{transparent}{\large{$\displaystyle #1$}}}}}} 81

63\gdef\cloze#1{{\raisebox{-.05em}{\colorbox{none}{\color{transparent}{\large{$\displaystyle #1$}}}}}} 63

4\gdef\cloze#1{{\raisebox{-.05em}{\colorbox{none}{\color{transparent}{\large{$\displaystyle #1$}}}}}} \cdot4

9\gdef\cloze#1{{\raisebox{-.05em}{\colorbox{none}{\color{transparent}{\large{$\displaystyle #1$}}}}}} \cdot9

7\gdef\cloze#1{{\raisebox{-.05em}{\colorbox{none}{\color{transparent}{\large{$\displaystyle #1$}}}}}} \cdot7

2\gdef\cloze#1{{\raisebox{-.05em}{\colorbox{none}{\color{transparent}{\large{$\displaystyle #1$}}}}}} \cdot2

14\gdef\cloze#1{{\raisebox{-.05em}{\colorbox{none}{\color{transparent}{\large{$\displaystyle #1$}}}}}} 14

3\gdef\cloze#1{{\raisebox{-.05em}{\colorbox{none}{\color{transparent}{\large{$\displaystyle #1$}}}}}} \cdot3

21\gdef\cloze#1{{\raisebox{-.05em}{\colorbox{none}{\color{transparent}{\large{$\displaystyle #1$}}}}}} 21

6\gdef\cloze#1{{\raisebox{-.05em}{\colorbox{none}{\color{transparent}{\large{$\displaystyle #1$}}}}}} \cdot6

42\gdef\cloze#1{{\raisebox{-.05em}{\colorbox{none}{\color{transparent}{\large{$\displaystyle #1$}}}}}} 42

78       10\gdef\cloze#1{{\raisebox{-.05em}{\colorbox{none}{\color{526060}{\large{$\displaystyle #1$}}}}}} \frac{7}{8}\xrightarrow[]{}\frac{\ \ \ \ \ \ \ }{10}
78       10\gdef\cloze#1{{\raisebox{-.05em}{\colorbox{none}{\color{526060}{\large{$\displaystyle #1$}}}}}} \frac{7}{8}\xrightarrow[]{}\frac{\ \ \ \ \ \ \ }{10}
78       10\gdef\cloze#1{{\raisebox{-.05em}{\colorbox{none}{\color{526060}{\large{$\displaystyle #1$}}}}}} \frac{7}{8}\xrightarrow[]{}\frac{\ \ \ \ \ \ \ }{10}

16\gdef\cloze#1{{\raisebox{-.05em}{\colorbox{none}{\color{transparent}{\large{$\displaystyle #1$}}}}}} 16

24\gdef\cloze#1{{\raisebox{-.05em}{\colorbox{none}{\color{transparent}{\large{$\displaystyle #1$}}}}}} 24

48\gdef\cloze#1{{\raisebox{-.05em}{\colorbox{none}{\color{transparent}{\large{$\displaystyle #1$}}}}}} 48

2\gdef\cloze#1{{\raisebox{-.05em}{\colorbox{none}{\color{transparent}{\large{$\displaystyle #1$}}}}}} \cdot2

3\gdef\cloze#1{{\raisebox{-.05em}{\colorbox{none}{\color{transparent}{\large{$\displaystyle #1$}}}}}} \cdot3

6\gdef\cloze#1{{\raisebox{-.05em}{\colorbox{none}{\color{transparent}{\large{$\displaystyle #1$}}}}}} \cdot6

7\gdef\cloze#1{{\raisebox{-.05em}{\colorbox{none}{\color{transparent}{\large{$\displaystyle #1$}}}}}} \cdot7

21\gdef\cloze#1{{\raisebox{-.05em}{\colorbox{none}{\color{transparent}{\large{$\displaystyle #1$}}}}}} 21

6\gdef\cloze#1{{\raisebox{-.05em}{\colorbox{none}{\color{transparent}{\large{$\displaystyle #1$}}}}}} \cdot6

18\gdef\cloze#1{{\raisebox{-.05em}{\colorbox{none}{\color{transparent}{\large{$\displaystyle #1$}}}}}} 18

2\gdef\cloze#1{{\raisebox{-.05em}{\colorbox{none}{\color{transparent}{\large{$\displaystyle #1$}}}}}} \cdot2

6\gdef\cloze#1{{\raisebox{-.05em}{\colorbox{none}{\color{transparent}{\large{$\displaystyle #1$}}}}}} 6

34       10\gdef\cloze#1{{\raisebox{-.05em}{\colorbox{none}{\color{526060}{\large{$\displaystyle #1$}}}}}} \frac{3}{4}\xrightarrow[]{}\frac{\ \ \ \ \ \ \ }{10}
34       10\gdef\cloze#1{{\raisebox{-.05em}{\colorbox{none}{\color{526060}{\large{$\displaystyle #1$}}}}}} \frac{3}{4}\xrightarrow[]{}\frac{\ \ \ \ \ \ \ }{10}
34       10\gdef\cloze#1{{\raisebox{-.05em}{\colorbox{none}{\color{526060}{\large{$\displaystyle #1$}}}}}} \frac{3}{4}\xrightarrow[]{}\frac{\ \ \ \ \ \ \ }{10}

28\gdef\cloze#1{{\raisebox{-.05em}{\colorbox{none}{\color{transparent}{\large{$\displaystyle #1$}}}}}} 28

24\gdef\cloze#1{{\raisebox{-.05em}{\colorbox{none}{\color{transparent}{\large{$\displaystyle #1$}}}}}} 24

8\gdef\cloze#1{{\raisebox{-.05em}{\colorbox{none}{\color{transparent}{\large{$\displaystyle #1$}}}}}} 8

7\gdef\cloze#1{{\raisebox{-.05em}{\colorbox{none}{\color{transparent}{\large{$\displaystyle #1$}}}}}} \cdot7

6\gdef\cloze#1{{\raisebox{-.05em}{\colorbox{none}{\color{transparent}{\large{$\displaystyle #1$}}}}}} \cdot6

2\gdef\cloze#1{{\raisebox{-.05em}{\colorbox{none}{\color{transparent}{\large{$\displaystyle #1$}}}}}} \cdot2

9\gdef\cloze#1{{\raisebox{-.05em}{\colorbox{none}{\color{transparent}{\large{$\displaystyle #1$}}}}}} \cdot9

9\gdef\cloze#1{{\raisebox{-.05em}{\colorbox{none}{\color{transparent}{\large{$\displaystyle #1$}}}}}} 9

4\gdef\cloze#1{{\raisebox{-.05em}{\colorbox{none}{\color{transparent}{\large{$\displaystyle #1$}}}}}} \cdot4

4\gdef\cloze#1{{\raisebox{-.05em}{\colorbox{none}{\color{transparent}{\large{$\displaystyle #1$}}}}}} 4

3\gdef\cloze#1{{\raisebox{-.05em}{\colorbox{none}{\color{transparent}{\large{$\displaystyle #1$}}}}}} \cdot3

3\gdef\cloze#1{{\raisebox{-.05em}{\colorbox{none}{\color{transparent}{\large{$\displaystyle #1$}}}}}} 3

12       10\gdef\cloze#1{{\raisebox{-.05em}{\colorbox{none}{\color{526060}{\large{$\displaystyle #1$}}}}}} \frac{1}{2}\xrightarrow[]{}\frac{\ \ \ \ \ \ \ }{10}
12       10\gdef\cloze#1{{\raisebox{-.05em}{\colorbox{none}{\color{526060}{\large{$\displaystyle #1$}}}}}} \frac{1}{2}\xrightarrow[]{}\frac{\ \ \ \ \ \ \ }{10}
12       10\gdef\cloze#1{{\raisebox{-.05em}{\colorbox{none}{\color{526060}{\large{$\displaystyle #1$}}}}}} \frac{1}{2}\xrightarrow[]{}\frac{\ \ \ \ \ \ \ }{10}

18\gdef\cloze#1{{\raisebox{-.05em}{\colorbox{none}{\color{transparent}{\large{$\displaystyle #1$}}}}}} 18

8\gdef\cloze#1{{\raisebox{-.05em}{\colorbox{none}{\color{transparent}{\large{$\displaystyle #1$}}}}}} 8

6\gdef\cloze#1{{\raisebox{-.05em}{\colorbox{none}{\color{transparent}{\large{$\displaystyle #1$}}}}}} 6

9\gdef\cloze#1{{\raisebox{-.05em}{\colorbox{none}{\color{transparent}{\large{$\displaystyle #1$}}}}}} \cdot9

4\gdef\cloze#1{{\raisebox{-.05em}{\colorbox{none}{\color{transparent}{\large{$\displaystyle #1$}}}}}} \cdot4

3\gdef\cloze#1{{\raisebox{-.05em}{\colorbox{none}{\color{transparent}{\large{$\displaystyle #1$}}}}}} \cdot3

8\gdef\cloze#1{{\raisebox{-.05em}{\colorbox{none}{\color{transparent}{\large{$\displaystyle #1$}}}}}} \cdot8

16\gdef\cloze#1{{\raisebox{-.05em}{\colorbox{none}{\color{transparent}{\large{$\displaystyle #1$}}}}}} 16

2\gdef\cloze#1{{\raisebox{-.05em}{\colorbox{none}{\color{transparent}{\large{$\displaystyle #1$}}}}}} \cdot2

4\gdef\cloze#1{{\raisebox{-.05em}{\colorbox{none}{\color{transparent}{\large{$\displaystyle #1$}}}}}} 4

9\gdef\cloze#1{{\raisebox{-.05em}{\colorbox{none}{\color{transparent}{\large{$\displaystyle #1$}}}}}} \cdot9

18\gdef\cloze#1{{\raisebox{-.05em}{\colorbox{none}{\color{transparent}{\large{$\displaystyle #1$}}}}}} 18

27       10\gdef\cloze#1{{\raisebox{-.05em}{\colorbox{none}{\color{526060}{\large{$\displaystyle #1$}}}}}} \frac{2}{7}\xrightarrow[]{}\frac{\ \ \ \ \ \ \ }{10}
27       10\gdef\cloze#1{{\raisebox{-.05em}{\colorbox{none}{\color{526060}{\large{$\displaystyle #1$}}}}}} \frac{2}{7}\xrightarrow[]{}\frac{\ \ \ \ \ \ \ }{10}
27       10\gdef\cloze#1{{\raisebox{-.05em}{\colorbox{none}{\color{526060}{\large{$\displaystyle #1$}}}}}} \frac{2}{7}\xrightarrow[]{}\frac{\ \ \ \ \ \ \ }{10}

56\gdef\cloze#1{{\raisebox{-.05em}{\colorbox{none}{\color{transparent}{\large{$\displaystyle #1$}}}}}} 56

14\gdef\cloze#1{{\raisebox{-.05em}{\colorbox{none}{\color{transparent}{\large{$\displaystyle #1$}}}}}} 14

63\gdef\cloze#1{{\raisebox{-.05em}{\colorbox{none}{\color{transparent}{\large{$\displaystyle #1$}}}}}} 63

8\gdef\cloze#1{{\raisebox{-.05em}{\colorbox{none}{\color{transparent}{\large{$\displaystyle #1$}}}}}} \cdot8

2\gdef\cloze#1{{\raisebox{-.05em}{\colorbox{none}{\color{transparent}{\large{$\displaystyle #1$}}}}}} \cdot2

9\gdef\cloze#1{{\raisebox{-.05em}{\colorbox{none}{\color{transparent}{\large{$\displaystyle #1$}}}}}} \cdot9

3\gdef\cloze#1{{\raisebox{-.05em}{\colorbox{none}{\color{transparent}{\large{$\displaystyle #1$}}}}}} \cdot3

12\gdef\cloze#1{{\raisebox{-.05em}{\colorbox{none}{\color{transparent}{\large{$\displaystyle #1$}}}}}} 12

8\gdef\cloze#1{{\raisebox{-.05em}{\colorbox{none}{\color{transparent}{\large{$\displaystyle #1$}}}}}} \cdot8

32\gdef\cloze#1{{\raisebox{-.05em}{\colorbox{none}{\color{transparent}{\large{$\displaystyle #1$}}}}}} 32

5\gdef\cloze#1{{\raisebox{-.05em}{\colorbox{none}{\color{transparent}{\large{$\displaystyle #1$}}}}}} \cdot5

20\gdef\cloze#1{{\raisebox{-.05em}{\colorbox{none}{\color{transparent}{\large{$\displaystyle #1$}}}}}} 20

45       10\gdef\cloze#1{{\raisebox{-.05em}{\colorbox{none}{\color{526060}{\large{$\displaystyle #1$}}}}}} \frac{4}{5}\xrightarrow[]{}\frac{\ \ \ \ \ \ \ }{10}
45       10\gdef\cloze#1{{\raisebox{-.05em}{\colorbox{none}{\color{526060}{\large{$\displaystyle #1$}}}}}} \frac{4}{5}\xrightarrow[]{}\frac{\ \ \ \ \ \ \ }{10}
45       10\gdef\cloze#1{{\raisebox{-.05em}{\colorbox{none}{\color{526060}{\large{$\displaystyle #1$}}}}}} \frac{4}{5}\xrightarrow[]{}\frac{\ \ \ \ \ \ \ }{10}

15\gdef\cloze#1{{\raisebox{-.05em}{\colorbox{none}{\color{transparent}{\large{$\displaystyle #1$}}}}}} 15

40\gdef\cloze#1{{\raisebox{-.05em}{\colorbox{none}{\color{transparent}{\large{$\displaystyle #1$}}}}}} 40

25\gdef\cloze#1{{\raisebox{-.05em}{\colorbox{none}{\color{transparent}{\large{$\displaystyle #1$}}}}}} 25

3\gdef\cloze#1{{\raisebox{-.05em}{\colorbox{none}{\color{transparent}{\large{$\displaystyle #1$}}}}}} \cdot3

8\gdef\cloze#1{{\raisebox{-.05em}{\colorbox{none}{\color{transparent}{\large{$\displaystyle #1$}}}}}} \cdot8

5\gdef\cloze#1{{\raisebox{-.05em}{\colorbox{none}{\color{transparent}{\large{$\displaystyle #1$}}}}}} \cdot5

1
Trage die fehlenden Zahlen ein.