• Brüche multiplizieren
  • MNWeG
  • 14.01.2022
  • Mathematik
  • Bruchrechnen
  • R (Regelstandard)
  • 6
  • Arbeitsblatt
Um die Lizenzinformationen zu sehen, klicken Sie bitte den gewünschten Inhalt an.
1
Berechne!
Kürze das Ergebnis und/oder forme es in eine gemischte Zahl um, wenn möglich.

4728=4278\gdef\cloze#1{{\raisebox{-.05em}{\colorbox{none}{\color{526060}{\large{$\displaystyle #1$}}}}}} \frac{4}{7} \cdot \frac{2}{8}= \frac{4 \xrightarrow{⋅}2}{7 \xrightarrow[⋅]{} 8} =\gdef\cloze#1{{\raisebox{-.05em}{\colorbox{none}{\color{526060}{\large{$\displaystyle #1$}}}}}} = 856\gdef\cloze#1{{\raisebox{-.05em}{\colorbox{none}{\color{526060}{\large{$\displaystyle #1$}}}}}} \frac{8}{56} =\gdef\cloze#1{{\raisebox{-.05em}{\colorbox{none}{\color{526060}{\large{$\displaystyle #1$}}}}}} = 428\gdef\cloze#1{{\raisebox{-.05em}{\colorbox{none}{\color{526060}{\large{$\displaystyle #1$}}}}}} \frac{4}{28} =\gdef\cloze#1{{\raisebox{-.05em}{\colorbox{none}{\color{526060}{\large{$\displaystyle #1$}}}}}} = 214\gdef\cloze#1{{\raisebox{-.05em}{\colorbox{none}{\color{526060}{\large{$\displaystyle #1$}}}}}} \frac{2}{14} =\gdef\cloze#1{{\raisebox{-.05em}{\colorbox{none}{\color{526060}{\large{$\displaystyle #1$}}}}}} = 17\gdef\cloze#1{{\raisebox{-.05em}{\colorbox{none}{\color{526060}{\large{$\displaystyle #1$}}}}}} \frac{1}{7}

Beispiel:

a) 3825=3285\gdef\cloze#1{{\raisebox{-.05em}{\colorbox{none}{\color{526060}{\large{$\displaystyle #1$}}}}}} \frac{3}{8} \cdot \frac{2}{5}= \frac{\cloze{3 \xrightarrow{⋅}2}}{\cloze{8 \xrightarrow[⋅]{} 5}} =\gdef\cloze#1{{\raisebox{-.05em}{\colorbox{none}{\color{526060}{\large{$\displaystyle #1$}}}}}} = 640\gdef\cloze#1{{\raisebox{-.05em}{\colorbox{none}{\color{526060}{\large{$\displaystyle #1$}}}}}} \frac{\cloze{6}}{\cloze{40}} =\gdef\cloze#1{{\raisebox{-.05em}{\colorbox{none}{\color{526060}{\large{$\displaystyle #1$}}}}}} = 320\gdef\cloze#1{{\raisebox{-.05em}{\colorbox{none}{\color{526060}{\large{$\displaystyle #1$}}}}}} \frac{\cloze{3}}{\cloze{20}}

b) 5734=5374\gdef\cloze#1{{\raisebox{-.05em}{\colorbox{none}{\color{526060}{\large{$\displaystyle #1$}}}}}} \frac{5}{7} \cdot \frac{3}{4}= \frac{\cloze{5 \xrightarrow{⋅}3}}{\cloze{7 \xrightarrow[⋅]{} 4}} =\gdef\cloze#1{{\raisebox{-.05em}{\colorbox{none}{\color{526060}{\large{$\displaystyle #1$}}}}}} = 1528\gdef\cloze#1{{\raisebox{-.05em}{\colorbox{none}{\color{526060}{\large{$\displaystyle #1$}}}}}} \frac{\cloze{15}}{\cloze{28}}

c) 5638=5368\gdef\cloze#1{{\raisebox{-.05em}{\colorbox{none}{\color{526060}{\large{$\displaystyle #1$}}}}}} \frac{5}{6} \cdot \frac{3}{8}= \frac{\cloze{5 \xrightarrow{⋅}3}}{\cloze{6 \xrightarrow[⋅]{} 8}} =\gdef\cloze#1{{\raisebox{-.05em}{\colorbox{none}{\color{526060}{\large{$\displaystyle #1$}}}}}} = 1548\gdef\cloze#1{{\raisebox{-.05em}{\colorbox{none}{\color{526060}{\large{$\displaystyle #1$}}}}}} \frac{\cloze{15}}{\cloze{48}} =\gdef\cloze#1{{\raisebox{-.05em}{\colorbox{none}{\color{526060}{\large{$\displaystyle #1$}}}}}} = 516\gdef\cloze#1{{\raisebox{-.05em}{\colorbox{none}{\color{526060}{\large{$\displaystyle #1$}}}}}} \frac{\cloze{5}}{\cloze{16}}

d) 12146=126141\gdef\cloze#1{{\raisebox{-.05em}{\colorbox{none}{\color{526060}{\large{$\displaystyle #1$}}}}}} \frac{12}{14} \cdot 6= \frac{\cloze{12 \xrightarrow{⋅}6}}{\cloze{14\xrightarrow[⋅]{} 1}} =\gdef\cloze#1{{\raisebox{-.05em}{\colorbox{none}{\color{526060}{\large{$\displaystyle #1$}}}}}} = 7214\gdef\cloze#1{{\raisebox{-.05em}{\colorbox{none}{\color{526060}{\large{$\displaystyle #1$}}}}}} \frac{\cloze{72}}{\cloze{14}} =\gdef\cloze#1{{\raisebox{-.05em}{\colorbox{none}{\color{526060}{\large{$\displaystyle #1$}}}}}} = 367\gdef\cloze#1{{\raisebox{-.05em}{\colorbox{none}{\color{526060}{\large{$\displaystyle #1$}}}}}} \frac{\cloze{36}}{\cloze{7}} =\gdef\cloze#1{{\raisebox{-.05em}{\colorbox{none}{\color{526060}{\large{$\displaystyle #1$}}}}}} = 517\gdef\cloze#1{{\raisebox{-.05em}{\colorbox{none}{\color{526060}{\large{$\displaystyle #1$}}}}}} \cloze{5}\frac{\cloze{1}}{\cloze{7}}

e) 629=6219\gdef\cloze#1{{\raisebox{-.05em}{\colorbox{none}{\color{526060}{\large{$\displaystyle #1$}}}}}} 6 \cdot \frac{2}{9}= \frac{\cloze{6 \xrightarrow{⋅}2}}{\cloze{1 \xrightarrow[⋅]{} 9}} =\gdef\cloze#1{{\raisebox{-.05em}{\colorbox{none}{\color{526060}{\large{$\displaystyle #1$}}}}}} = 129\gdef\cloze#1{{\raisebox{-.05em}{\colorbox{none}{\color{526060}{\large{$\displaystyle #1$}}}}}} \frac{\cloze{12}}{\cloze{9}} =\gdef\cloze#1{{\raisebox{-.05em}{\colorbox{none}{\color{526060}{\large{$\displaystyle #1$}}}}}} = 139\gdef\cloze#1{{\raisebox{-.05em}{\colorbox{none}{\color{526060}{\large{$\displaystyle #1$}}}}}} \cloze{1}\frac{\cloze{3}}{\cloze{9}} =\gdef\cloze#1{{\raisebox{-.05em}{\colorbox{none}{\color{526060}{\large{$\displaystyle #1$}}}}}} = 113\gdef\cloze#1{{\raisebox{-.05em}{\colorbox{none}{\color{526060}{\large{$\displaystyle #1$}}}}}} \cloze{1}\frac{\cloze{1}}{\cloze{3}}

f) 21356=25136\gdef\cloze#1{{\raisebox{-.05em}{\colorbox{none}{\color{526060}{\large{$\displaystyle #1$}}}}}} \frac{2}{13} \cdot \frac{5}{6}= \frac{\cloze{2 \xrightarrow{⋅}5}}{\cloze{13 \xrightarrow[⋅]{} 6}} =\gdef\cloze#1{{\raisebox{-.05em}{\colorbox{none}{\color{526060}{\large{$\displaystyle #1$}}}}}} = 1078\gdef\cloze#1{{\raisebox{-.05em}{\colorbox{none}{\color{526060}{\large{$\displaystyle #1$}}}}}} \frac{\cloze{10}}{\cloze{78}} =\gdef\cloze#1{{\raisebox{-.05em}{\colorbox{none}{\color{526060}{\large{$\displaystyle #1$}}}}}} = 538\gdef\cloze#1{{\raisebox{-.05em}{\colorbox{none}{\color{526060}{\large{$\displaystyle #1$}}}}}} \frac{\cloze{5}}{\cloze{38}}

f) 8947=8497\gdef\cloze#1{{\raisebox{-.05em}{\colorbox{none}{\color{526060}{\large{$\displaystyle #1$}}}}}} \frac{8}{9} \cdot \frac{4}{7}= \frac{\cloze{8 \xrightarrow{⋅}4}}{\cloze{9 \xrightarrow[⋅]{} 7}} =\gdef\cloze#1{{\raisebox{-.05em}{\colorbox{none}{\color{526060}{\large{$\displaystyle #1$}}}}}} = 3263\gdef\cloze#1{{\raisebox{-.05em}{\colorbox{none}{\color{526060}{\large{$\displaystyle #1$}}}}}} \frac{\cloze{32}}{\cloze{63}}

e) 457=4517\gdef\cloze#1{{\raisebox{-.05em}{\colorbox{none}{\color{526060}{\large{$\displaystyle #1$}}}}}} 4 \cdot \frac{5}{7}= \frac{\cloze{4 \xrightarrow{⋅}5}}{\cloze{1 \xrightarrow[⋅]{} 7}} =\gdef\cloze#1{{\raisebox{-.05em}{\colorbox{none}{\color{526060}{\large{$\displaystyle #1$}}}}}} = 207\gdef\cloze#1{{\raisebox{-.05em}{\colorbox{none}{\color{526060}{\large{$\displaystyle #1$}}}}}} \frac{\cloze{20}}{\cloze{7}} =\gdef\cloze#1{{\raisebox{-.05em}{\colorbox{none}{\color{526060}{\large{$\displaystyle #1$}}}}}} = 267\gdef\cloze#1{{\raisebox{-.05em}{\colorbox{none}{\color{526060}{\large{$\displaystyle #1$}}}}}} \cloze{2}\frac{\cloze{6}}{\cloze{7}}