• Das Dualsystem
  • MNWeG
  • 31.01.2022
  • Mathematik
  • Zahlen
  • E (Expertenstandard)
  • 5
  • Arbeitsblatt
Um die Lizenzinformationen zu sehen, klicken Sie bitte den gewünschten Inhalt an.
1
Rechne die Zahlen aus dem Dualsystem in das Dezimalsystem um. Nutze dazu die Stellenwerttafel.
a) 1012
f) 10112

b) 10102

g) 101012

c) 10002

h) 1110012

d) 1002

i) 1010112

e) 1112

j) 11000112

64

32

16

8

4

2

1

Zahl im Dezimalsystem

a)

1

0

1

4 + 1 = 5

b)

1

0

1

0

8 + 2 = 10

c)

1

0

0

0

8 = 8

d

1

0

0

4 = 4

e)

1

1

1

4 + 2 + 1 = 7

f)

1

0

1

1

8 + 2 + 1 = 11

g)

1

0

1

0

1

16 + 4 + 1 = 21

h)

1

1

1

0

0

1

32 + 16 + 8 + 1 = 57

i)

1

0

1

0

1

1

32 + 8 + 2 + 1 = 43

j)

1

1

0

0

0

1

1

64 + 32 +2 + 1 = 99

2
Wie das Dezimalsystem kann das Dualsystem für größere Zahlen beliebig erweitert werden. Große Zahlen haben dann mehr Stellen.
Wandle die Zahl 10001101012 ins Dezimalsystem um. Berechne dafür zuerst die Werte der einzelnen Stellen.
512 + 32 + 16 + 4 + 1 = 563
3
Gib die Zahlen von 1 bis 10 im Dualsystem an.
1, 10, 11, 100, 101, 110, 111, 1000, 1001, 1010
4
Wandle die Zahlen mithilfe der Tabelle vom Dezimalsystem ins Dualsystem um.
a) 17

b) 23

c) 35

d) 85

e) 100

Zahl als Summe

64

32

16

8

4

2

1

Zahl im Dualsystem

a)

17 = 16 + 1

1

0

0

0

1

100012

b)

23 = 16 + 4 + 2+ 1

1

0

1

1

1

101112

c)

35 = 32 + 2 + 1

1

0

0

0

1

1

1000112

d

85 = 64 + 16 + 4 + 1

1

0

1

0

1

0

1

10101012

e)

100 = 64 + 32 + 4

1

1

0

0

1

0

0

11001002

5
Gib dein Geburtsdatum im Dualsystem an.
individuelle Lösung
6
a) Bestimme die Zahlen 1, 3, 7, 15 und 31 im Dualsystem.
b) Beschreibe, welche Gemeinsamkeit die Zahlen im Dualsystem haben.
c) Erläutere, wie es zu dieser Gemeinsamkeit kommt.
a) 12, 112, 1112, 11112 und 111112
b) Die Zahlen enthalten alle nur die Ziffer „1“.
c) Bei allen Zahlen handelt es sich um Zahlen aus der Stellenwerttafel, von denen „1“ subtrahiert wurde.
7
Gib den Vorgänger und den Nachfolger der Zahl im Dualsystem an.

12

102

112

1012

1102

1112

1112

10002

10012

102

112

1002

10112

11002

11012

100102

100112

101002

8
Erläutere, wie sich bei einer Zahl im Dualsystem auf einen Blick erkennen lässt, ob sie gerade oder ungerade ist.
Alle geraden Zahlen haben an der Position ganz rechts eine „0“ stehen, alle ungeraden Zahlen haben dort eine „1“.
9
Die Zahl 1 hat im Dezimalsystem und im Dualsystem den gleichen Wert: 1 = 12. Untersuche, ob es weitere Zahlen gibt, auf die das zutrifft.
Neben der 1 gilt das noch für die 0 = 02. Ansonsten hat eine Zahl im Dualsystem immer mehr Stellen als im Dezimalsystem.