a) I. x2 = 2x1 – 1
II. x2 = 4x1 – 5
b) I. x1 = 2x2 + 3
II. x1 = -x2 – 3
c) I. 2x1 = 8x2 + 4
II. 2x1 = -2x2 + 9
a) I. 2x1 + 3x2 = -4
II. x1 = 2x2 + 5
b) I. 2x1 + x2 = 4
II. x2 = 2x1 + 2
c) I. -4x1 – x2 = 4
II. x2 = 2x1 + 8
a) I. 2x1 + x2 = 6
II. 3x1 – x2 = -1
c) I. 3x1 + 2x2 = 5
II. x1 + 2x2 = -1
b) I. 4x1 – x2 = -9
II. 2x1 + 3x2 = -1
a) I. 3x1 – 2x2 = 2
II. x1 = 3 – 4x2
c) I. x1 = 4x2 – 3
II. x1 = 2x2 – 2,5
b) I. 2x1 + 4x2 = 5
II. 2x1 – 4x2 = -11
d) I. 31 x1 + 2x2 = -2
II. x1 = 2 – 2x2
e) I. 4x2 = x1 – 61
II. 4x2 = 3x1 – 1,5
f) I. 2x1 + 3x2 = 3
II. 3x1 + 2x2 = 7
Gleichsetzungsverfahren
I. x1 = x2 + 4
II. 2x1 = 10 + 3x2
Gleichsetzen:
x2 + 4 = 10 + 3x2 | – x2
4 = 10 + 2x2 | – 10
-6 = 2x2 | : 2
-3 = x2
x1 = -3 + 4
x1 = 1
L = {1; -3}
Einsetzungsverfahren
I. 3x1 + 4x2 = 8
II. x1 = 3 – 2x2
Einsetzen:
3 · 3 – 2x2 + 4x2 = 8
9 + 2x2 = 8 | – 9
2x2 = -1 | : 2
x2 = -0,5
x1 = 3 – 2 · (-0,5)
x1 = 4
L = {4; -0,5}
Additionsverfahren
I. 2x1 + x2 = -1
II. 2x1 - 3x2 = 11
I. + II. -2x2 = 10 | : (-2)
x2 = -5
2x1 – 5 = -1 | + 5
2x1 = 4 | : 2
x1 = 2
L = {2; -5}
https://editor.mnweg.org/mnw/dokument/ein-lgs-rechnerisch-losen-15


