Die Lösung eines LGS lässt sich nicht nur berechnen. Sie lässt sich auch zeichnerisch bestimmen. Das Gleichungssystem ist:
I. 2x2 – 4x1 = 2
II. x2 = -x1 + 7
Da in Funktionen meistens x und y statt x1 und x2 verwendet werden, werden die Variablen umbenannt:
I. 2y – 4x = 2
II. y = -x + 7
Beide Gleichungen des LGS werden nach y umgestellt. Da in diesem Beispiel die Gleichung II bereits nach y umgestellt ist, wird nur Gleichung I umgestellt.
2y – 4x = 2 | + 4x
2y = 2 + 4x | : 2
y = 1 + 2x
y = 2x + 1
Das LGS ist nun:
I. y = 2x + 1
II. y = -x + 7
Es handelt sich bei den Gleichungen um lineare Funktionen. Diese werden in ein Koordinatensystem eingezeichnet:
Der Schnittpunkt der beiden Geraden ist die Lösung des LGS. In diesem Beispiel schneiden sich die Geraden bei P (2|5). Die Lösungsmenge ist daher: L = {2; 5}
Sie nutzen einen Browser mit dem mnweg.org nicht einwandfrei funktioniert. Bitte aktualisieren Sie Ihren Browser.
Sie verwenden eine ältere Version Ihres Browsers. Es ist möglich, dass mnweg.org mit dieser Version nicht einwandfrei funktioniert. Um mnweg.org optimal nutzen zu können, aktualisieren Sie bitte Ihren Browser oder installieren Sie einen dieser kostenlosen Browser: