Hast du dir schon das Material INFO: Das Dreieck angesehen?
Wenn nein, dann sieh es dir zuerst an!
Beim Dreieck haben wir einen Trick angewendet, um seinen Flächeninhalt berechnen zu können. Hast du eine Idee, wie man bei einem Parallelogramm vorgehen könnte?
Stell dir einen Timer auf 5 Minuten, nimm ein Geodreieck und einen Bleistift und versuche selbst eine Lösung zu finden, bevor du auf den nächsten Seiten erfährst, wie es funktioniert!
Zeichne dir mehrere identische Parallelogramme auf ein Blatt Papier und schneide sie aus. Dann kannst du mit weiteren Schnitten versuchen, aus den Parallelogrammen ein Rechteck zu machen.
Sicher hast du es selbst herausgefunden. Hier aber nochmal Schritt für Schritt:
Ein Parallelogramm ist eine Fläche, bei der die gegenüberliegenden Seiten gleich lang und parallel zueinander sind. Daher auch der Name.
Wenn man eine Spitze
des Parallelogramms abschneidet und auf der anderen Seite anklebt
, ergibt sich wieder ein ...
... Rechteck!
Und wie man die Fläche eines Rechtecks berechnet, wissen wir ja schon:
A□=a⋅b
b
a
Wie aber schon beim Dreieck, ist die Seite b des Parallelogramms (also die schräge
Seite) nicht identisch mit der Seite b des grauen Rechtecks, die ja im rechten Winkel zur Seite a stehen muss!
Also gilt auch hier - wie beim Dreieck - dass man mit der Höhe von a (ha) arbeiten muss.
Die Formel lautet also:
b
AP=a⋅ha
Sie nutzen einen Browser mit dem mnweg.org nicht einwandfrei funktioniert. Bitte aktualisieren Sie Ihren Browser.
Sie verwenden eine ältere Version Ihres Browsers. Es ist möglich, dass mnweg.org mit dieser Version nicht einwandfrei funktioniert. Um mnweg.org optimal nutzen zu können, aktualisieren Sie bitte Ihren Browser oder installieren Sie einen dieser kostenlosen Browser: