
AB: Lage von Geraden & Schnittpunkte

Mathematik Funktionen R 8

(1) **Kreuze an**, welche Linearen Funktionen *schneiden* sich, sind *parallel* oder *identisch*?

	schneiden sich	parallel	identisch
I. $y = 0.5x + 5$ II. $y = 0.5x + 2$	0	0	0
I. $y = 3x - 9$ II. $y = x + 1$	0	0	0
I. $y = x + 4$ II. $y = 1x + 4$	0	0	0
I. y = 4x - 7 II. y = - 4x -7	0	0	0
I. y = 10x + 9 II. y = 10x - 1,5	0	0	0
I. y = 7x + 5 II. y = 7x - 3	0	0	0
I. $y = -3x + 5$ II. $y = 3x - 1$	0	0	0
I. $y = 4x + 0$ II. $y = 4x$	0	0	0

- (2) Gegeben ist die Gerade **f**: **y** = **5x 1**
 - a) **Zeichne** die Gerade **h**, welche die Funktion in einem beliebigen Punkt S schneidet und gib deren Funktionsgleichung an.
 - b) **Zeichne** die Gerade **k**, welche **parallel** zu f verläuft und gib deren Funktionsgleichung an.
 - c) Wie lautet die **Funktionsgleichung** der Funktion **m**, welche identisch zu f ist? Schreibe diese auf.

③ **Berechne** die Schnittpunkte der linearen Funktionen mit dem *Gleichsetzungsverfahren*.

a) I.
$$y = 2x$$

II. $y = -2x + 2$

c) I.
$$y = -4x + 49$$

II. $y = 3x$

e) I.
$$y = -0.5x + 3$$

II. $y = -2.5x - 2$

b) I.
$$y = 2x + 4$$

II. $y = -2x + 4$

d) I.
$$y = -2x +13$$

II. $y = 3x + 3$

f) I.
$$y = 2x - 3$$

II. $y = x - 3$

