• Quadratwurzeln
  • MNWeG
  • 23.11.2021
  • Mathematik
  • Terme
  • M (Mindeststandard)
  • 8
  • Einzelarbeit
  • Arbeitsblatt
Um die Lizenzinformationen zu sehen, klicken Sie bitte den gewünschten Inhalt an.
1
Ziehe die Quadratwurzeln
  • 100=\gdef\cloze#1{{\raisebox{-.05em}{\colorbox{none}{\color{526060}{\large{$\displaystyle #1$}}}}}} \sqrt{100}= 10
  • 256=\gdef\cloze#1{{\raisebox{-.05em}{\colorbox{none}{\color{526060}{\large{$\displaystyle #1$}}}}}} \sqrt{256}= 16
  • 25=\gdef\cloze#1{{\raisebox{-.05em}{\colorbox{none}{\color{526060}{\large{$\displaystyle #1$}}}}}} \sqrt{25}= 5
  • 16=\gdef\cloze#1{{\raisebox{-.05em}{\colorbox{none}{\color{526060}{\large{$\displaystyle #1$}}}}}} \sqrt{16}= 4
  • 64=\gdef\cloze#1{{\raisebox{-.05em}{\colorbox{none}{\color{526060}{\large{$\displaystyle #1$}}}}}} \sqrt{64}= 8
  • 4=\gdef\cloze#1{{\raisebox{-.05em}{\colorbox{none}{\color{526060}{\large{$\displaystyle #1$}}}}}} \sqrt{4}= 2
  • 1=\gdef\cloze#1{{\raisebox{-.05em}{\colorbox{none}{\color{526060}{\large{$\displaystyle #1$}}}}}} \sqrt{1}= 1
  • 49=\gdef\cloze#1{{\raisebox{-.05em}{\colorbox{none}{\color{526060}{\large{$\displaystyle #1$}}}}}} \sqrt{49}= 7
  • 196=\gdef\cloze#1{{\raisebox{-.05em}{\colorbox{none}{\color{526060}{\large{$\displaystyle #1$}}}}}} \sqrt{196}= 14
  • 289=\gdef\cloze#1{{\raisebox{-.05em}{\colorbox{none}{\color{526060}{\large{$\displaystyle #1$}}}}}} \sqrt{289}= 17
  • 400=\gdef\cloze#1{{\raisebox{-.05em}{\colorbox{none}{\color{526060}{\large{$\displaystyle #1$}}}}}} \sqrt{400}= 20
  • 144=\gdef\cloze#1{{\raisebox{-.05em}{\colorbox{none}{\color{526060}{\large{$\displaystyle #1$}}}}}} \sqrt{144}= 12
  • 9=\gdef\cloze#1{{\raisebox{-.05em}{\colorbox{none}{\color{526060}{\large{$\displaystyle #1$}}}}}} \sqrt{9}= 3
  • 81=\gdef\cloze#1{{\raisebox{-.05em}{\colorbox{none}{\color{526060}{\large{$\displaystyle #1$}}}}}} \sqrt{81}= 9
  • 324=\gdef\cloze#1{{\raisebox{-.05em}{\colorbox{none}{\color{526060}{\large{$\displaystyle #1$}}}}}} \sqrt{324}= 18
  • 169=\gdef\cloze#1{{\raisebox{-.05em}{\colorbox{none}{\color{526060}{\large{$\displaystyle #1$}}}}}} \sqrt{169}= 13
  • 36=\gdef\cloze#1{{\raisebox{-.05em}{\colorbox{none}{\color{526060}{\large{$\displaystyle #1$}}}}}} \sqrt{36}= 6
  • 361=\gdef\cloze#1{{\raisebox{-.05em}{\colorbox{none}{\color{526060}{\large{$\displaystyle #1$}}}}}} \sqrt{361}= 19
2
Zwischen welchen natürlichen Zahlen wird das Ergebnis der Wurzel liegen?!
  • 14\gdef\cloze#1{{\raisebox{-.05em}{\colorbox{none}{\color{526060}{\large{$\displaystyle #1$}}}}}} \sqrt{14}
  • Der Radikand ist kleiner als 16\gdef\cloze#1{{\raisebox{-.05em}{\colorbox{none}{\color{526060}{\large{$\displaystyle #1$}}}}}} 16 und größer als 9\gdef\cloze#1{{\raisebox{-.05em}{\colorbox{none}{\color{526060}{\large{$\displaystyle #1$}}}}}} 9.
  • Das Ergebnis liegt zwischen 4\gdef\cloze#1{{\raisebox{-.05em}{\colorbox{none}{\color{526060}{\large{$\displaystyle #1$}}}}}} 4 und 3\gdef\cloze#1{{\raisebox{-.05em}{\colorbox{none}{\color{526060}{\large{$\displaystyle #1$}}}}}} 3
  • 61\gdef\cloze#1{{\raisebox{-.05em}{\colorbox{none}{\color{526060}{\large{$\displaystyle #1$}}}}}} \sqrt{61} zwischen 7 und 8
  • 397\gdef\cloze#1{{\raisebox{-.05em}{\colorbox{none}{\color{526060}{\large{$\displaystyle #1$}}}}}} \sqrt{397} zwischen 19 und 20
  • 259\gdef\cloze#1{{\raisebox{-.05em}{\colorbox{none}{\color{526060}{\large{$\displaystyle #1$}}}}}} \sqrt{259} zwischen 16 und 17
  • 28\gdef\cloze#1{{\raisebox{-.05em}{\colorbox{none}{\color{526060}{\large{$\displaystyle #1$}}}}}} \sqrt{28} zwischen 5 und 6
  • 103\gdef\cloze#1{{\raisebox{-.05em}{\colorbox{none}{\color{526060}{\large{$\displaystyle #1$}}}}}} \sqrt{103} zwischen 10 und 11
  • 228\gdef\cloze#1{{\raisebox{-.05em}{\colorbox{none}{\color{526060}{\large{$\displaystyle #1$}}}}}} \sqrt{228} zwischen 15 und 16
  • 22\gdef\cloze#1{{\raisebox{-.05em}{\colorbox{none}{\color{526060}{\large{$\displaystyle #1$}}}}}} \sqrt{22} zwischen 4 und 5
  • 12\gdef\cloze#1{{\raisebox{-.05em}{\colorbox{none}{\color{526060}{\large{$\displaystyle #1$}}}}}} \sqrt{12} zwischen 3 und 4
  • 78\gdef\cloze#1{{\raisebox{-.05em}{\colorbox{none}{\color{526060}{\large{$\displaystyle #1$}}}}}} \sqrt{78} zwischen 8 und 9
  • 124\gdef\cloze#1{{\raisebox{-.05em}{\colorbox{none}{\color{526060}{\large{$\displaystyle #1$}}}}}} \sqrt{124} zwischen 11 und 12
  • 222\gdef\cloze#1{{\raisebox{-.05em}{\colorbox{none}{\color{526060}{\large{$\displaystyle #1$}}}}}} \sqrt{222} zwischen 14 und 15
  • 327\gdef\cloze#1{{\raisebox{-.05em}{\colorbox{none}{\color{526060}{\large{$\displaystyle #1$}}}}}} \sqrt{327} zwischen 18 und 19
  • 193\gdef\cloze#1{{\raisebox{-.05em}{\colorbox{none}{\color{526060}{\large{$\displaystyle #1$}}}}}} \sqrt{193} zwischen 13 und 14
  • 4\gdef\cloze#1{{\raisebox{-.05em}{\colorbox{none}{\color{526060}{\large{$\displaystyle #1$}}}}}} \sqrt{4} zwischen 1 und 2
3
Ziehe die Quadratwurzeln mit dem Taschenrechner. Runde die Ergebnisse auf 2 Stellen nach dem Komma.
  • 843,32=\gdef\cloze#1{{\raisebox{-.05em}{\colorbox{none}{\color{526060}{\large{$\displaystyle #1$}}}}}} \sqrt{843{,}32}= 29,04
  • 4992,84=\gdef\cloze#1{{\raisebox{-.05em}{\colorbox{none}{\color{526060}{\large{$\displaystyle #1$}}}}}} \sqrt{4992{,}84}= 70,66
  • 8917,02=\gdef\cloze#1{{\raisebox{-.05em}{\colorbox{none}{\color{526060}{\large{$\displaystyle #1$}}}}}} \sqrt{8917{,}02}= 94,43
  • 4032,25=\gdef\cloze#1{{\raisebox{-.05em}{\colorbox{none}{\color{526060}{\large{$\displaystyle #1$}}}}}} \sqrt{4032{,}25}= 63,50
  • 3700,29=\gdef\cloze#1{{\raisebox{-.05em}{\colorbox{none}{\color{526060}{\large{$\displaystyle #1$}}}}}} \sqrt{3700{,}29}= 60,83
  • 4949,12=\gdef\cloze#1{{\raisebox{-.05em}{\colorbox{none}{\color{526060}{\large{$\displaystyle #1$}}}}}} \sqrt{4949{,}12}= 70,35
  • 6323,43=\gdef\cloze#1{{\raisebox{-.05em}{\colorbox{none}{\color{526060}{\large{$\displaystyle #1$}}}}}} \sqrt{6323{,}43}= 79,52
  • 4805,26=\gdef\cloze#1{{\raisebox{-.05em}{\colorbox{none}{\color{526060}{\large{$\displaystyle #1$}}}}}} \sqrt{4805{,}26}= 69,32
  • 9529,66=\gdef\cloze#1{{\raisebox{-.05em}{\colorbox{none}{\color{526060}{\large{$\displaystyle #1$}}}}}} \sqrt{9529{,}66}= 97,62
  • 4027,17=\gdef\cloze#1{{\raisebox{-.05em}{\colorbox{none}{\color{526060}{\large{$\displaystyle #1$}}}}}} \sqrt{4027{,}17}= 63,46
  • 3,69=\gdef\cloze#1{{\raisebox{-.05em}{\colorbox{none}{\color{526060}{\large{$\displaystyle #1$}}}}}} \sqrt{3{,}69}= 1,92
  • 1018,89=\gdef\cloze#1{{\raisebox{-.05em}{\colorbox{none}{\color{526060}{\large{$\displaystyle #1$}}}}}} \sqrt{1018{,}89}= 31,92
  • 2707,12=\gdef\cloze#1{{\raisebox{-.05em}{\colorbox{none}{\color{526060}{\large{$\displaystyle #1$}}}}}} \sqrt{2707{,}12}= 52,03
  • 2277,20=\gdef\cloze#1{{\raisebox{-.05em}{\colorbox{none}{\color{526060}{\large{$\displaystyle #1$}}}}}} \sqrt{2277{,}20}= 47,72
  • 1941,28=\gdef\cloze#1{{\raisebox{-.05em}{\colorbox{none}{\color{526060}{\large{$\displaystyle #1$}}}}}} \sqrt{1941{,}28}= 44,06
  • 3083,58=\gdef\cloze#1{{\raisebox{-.05em}{\colorbox{none}{\color{526060}{\large{$\displaystyle #1$}}}}}} \sqrt{3083{,}58}= 55,53
  • 5389,03=\gdef\cloze#1{{\raisebox{-.05em}{\colorbox{none}{\color{526060}{\large{$\displaystyle #1$}}}}}} \sqrt{5389{,}03}= 73,41
  • 6601,56=\gdef\cloze#1{{\raisebox{-.05em}{\colorbox{none}{\color{526060}{\large{$\displaystyle #1$}}}}}} \sqrt{6601{,}56}= 81,25
  • 995,40=\gdef\cloze#1{{\raisebox{-.05em}{\colorbox{none}{\color{526060}{\large{$\displaystyle #1$}}}}}} \sqrt{995{,}40}= 31,55
  • 329,06=\gdef\cloze#1{{\raisebox{-.05em}{\colorbox{none}{\color{526060}{\large{$\displaystyle #1$}}}}}} \sqrt{329{,}06}= 18,14
4
2\gdef\cloze#1{{\raisebox{-.05em}{\colorbox{none}{\color{526060}{\large{$\displaystyle #1$}}}}}} \sqrt{2} ist ein unendlicher Dezimalbruch. Es lässt sich also keine Regel für eine Periode feststellen.
  • Berechne die Stellen hinter dem Komma, bis du keine Lust mehr hast.
  • 2=\gdef\cloze#1{{\raisebox{-.05em}{\colorbox{none}{\color{526060}{\large{$\displaystyle #1$}}}}}} \sqrt{2}= 1,4142135624