• Terme in der Geometrie
  • MNWeG
  • 13.05.2022
  • Mathematik
  • Gleichungen
  • M (Mindeststandard)
  • 7
  • Arbeitsblatt
Um die Lizenzinformationen zu sehen, klicken Sie bitte den gewünschten Inhalt an.

In der Geometrie hast du von Anfang an mit Termen gearbeitet. So berechnet man bspw. den Umfang (U\gdef\cloze#1{{\raisebox{-.05em}{\colorbox{none}{\color{526060}{\large{$\displaystyle #1$}}}}}} U) eines Rechtecks mit dem Term 2a+2b\gdef\cloze#1{{\raisebox{-.05em}{\colorbox{none}{\color{526060}{\large{$\displaystyle #1$}}}}}} 2\cdot a + 2\cdot b.

1
Stelle Terme zur Berechnung des gesuchten Wertes (U\gdef\cloze#1{{\raisebox{-.05em}{\colorbox{none}{\color{526060}{\large{$\displaystyle #1$}}}}}} U oder A\gdef\cloze#1{{\raisebox{-.05em}{\colorbox{none}{\color{526060}{\large{$\displaystyle #1$}}}}}} A) auf.

U=\gdef\cloze#1{{\raisebox{-.05em}{\colorbox{none}{\color{526060}{\large{$\displaystyle #1$}}}}}} U= a+a+b+b=2a+2b\gdef\cloze#1{{\raisebox{-.05em}{\colorbox{none}{\color{transparent}{\large{$\displaystyle #1$}}}}}} a+a+b+b=2a + 2b

b\gdef\cloze#1{{\raisebox{-.05em}{\colorbox{none}{\color{526060}{\large{$\displaystyle #1$}}}}}} b

A=\gdef\cloze#1{{\raisebox{-.05em}{\colorbox{none}{\color{526060}{\large{$\displaystyle #1$}}}}}} A= ab\gdef\cloze#1{{\raisebox{-.05em}{\colorbox{none}{\color{transparent}{\large{$\displaystyle #1$}}}}}} a\cdot b

a\gdef\cloze#1{{\raisebox{-.05em}{\colorbox{none}{\color{526060}{\large{$\displaystyle #1$}}}}}} a

d\gdef\cloze#1{{\raisebox{-.05em}{\colorbox{none}{\color{526060}{\large{$\displaystyle #1$}}}}}} d

U=\gdef\cloze#1{{\raisebox{-.05em}{\colorbox{none}{\color{526060}{\large{$\displaystyle #1$}}}}}} U= a+b+c+b+c+d=a+2b+2c+d\gdef\cloze#1{{\raisebox{-.05em}{\colorbox{none}{\color{transparent}{\large{$\displaystyle #1$}}}}}} a+b+c+b+c+d= a + 2b + 2c + d

c\gdef\cloze#1{{\raisebox{-.05em}{\colorbox{none}{\color{526060}{\large{$\displaystyle #1$}}}}}} c

a\gdef\cloze#1{{\raisebox{-.05em}{\colorbox{none}{\color{526060}{\large{$\displaystyle #1$}}}}}} a

b\gdef\cloze#1{{\raisebox{-.05em}{\colorbox{none}{\color{526060}{\large{$\displaystyle #1$}}}}}} b

A=\gdef\cloze#1{{\raisebox{-.05em}{\colorbox{none}{\color{526060}{\large{$\displaystyle #1$}}}}}} A= bc+cd\gdef\cloze#1{{\raisebox{-.05em}{\colorbox{none}{\color{transparent}{\large{$\displaystyle #1$}}}}}} b\cdot c + c\cdot d

c\gdef\cloze#1{{\raisebox{-.05em}{\colorbox{none}{\color{526060}{\large{$\displaystyle #1$}}}}}} c

b\gdef\cloze#1{{\raisebox{-.05em}{\colorbox{none}{\color{526060}{\large{$\displaystyle #1$}}}}}} b

U=\gdef\cloze#1{{\raisebox{-.05em}{\colorbox{none}{\color{526060}{\large{$\displaystyle #1$}}}}}} U= a+a+a+a=4a\gdef\cloze#1{{\raisebox{-.05em}{\colorbox{none}{\color{transparent}{\large{$\displaystyle #1$}}}}}} a+a+a+a= 4a

a\gdef\cloze#1{{\raisebox{-.05em}{\colorbox{none}{\color{526060}{\large{$\displaystyle #1$}}}}}} a

A=\gdef\cloze#1{{\raisebox{-.05em}{\colorbox{none}{\color{526060}{\large{$\displaystyle #1$}}}}}} A= aa=a2\gdef\cloze#1{{\raisebox{-.05em}{\colorbox{none}{\color{transparent}{\large{$\displaystyle #1$}}}}}} a\cdot a=a^2

a\gdef\cloze#1{{\raisebox{-.05em}{\colorbox{none}{\color{526060}{\large{$\displaystyle #1$}}}}}} a

c\gdef\cloze#1{{\raisebox{-.05em}{\colorbox{none}{\color{526060}{\large{$\displaystyle #1$}}}}}} c

U=\gdef\cloze#1{{\raisebox{-.05em}{\colorbox{none}{\color{526060}{\large{$\displaystyle #1$}}}}}} U= a+b+c+d\gdef\cloze#1{{\raisebox{-.05em}{\colorbox{none}{\color{transparent}{\large{$\displaystyle #1$}}}}}} a+b+c+d

d\gdef\cloze#1{{\raisebox{-.05em}{\colorbox{none}{\color{526060}{\large{$\displaystyle #1$}}}}}} d

b\gdef\cloze#1{{\raisebox{-.05em}{\colorbox{none}{\color{526060}{\large{$\displaystyle #1$}}}}}} b

A=\gdef\cloze#1{{\raisebox{-.05em}{\colorbox{none}{\color{526060}{\large{$\displaystyle #1$}}}}}} A= (a+c)ha2\gdef\cloze#1{{\raisebox{-.05em}{\colorbox{none}{\color{transparent}{\large{$\displaystyle #1$}}}}}} \frac{(a+c)\cdot h_a}{2}

a\gdef\cloze#1{{\raisebox{-.05em}{\colorbox{none}{\color{526060}{\large{$\displaystyle #1$}}}}}} a