• Terme mit Klammern auflösen
  • MNWeG
  • 23.11.2021
  • Mathematik
  • Terme
  • M (Mindeststandard)
  • 8
  • Einzelarbeit
  • Arbeitsblatt
Um die Lizenzinformationen zu sehen, klicken Sie bitte den gewünschten Inhalt an.
1
Bewerte, ob die Zeichen notwendig oder unnötig sind.
unnötig
notwendig
Das \gdef\cloze#1{{\raisebox{-.05em}{\colorbox{none}{\color{transparent}{\large{$\displaystyle #1$}}}}}} - bei dem Term: 34\gdef\cloze#1{{\raisebox{-.05em}{\colorbox{none}{\color{transparent}{\large{$\displaystyle #1$}}}}}} \color{Blue}{3-4}.
Das +\gdef\cloze#1{{\raisebox{-.05em}{\colorbox{none}{\color{transparent}{\large{$\displaystyle #1$}}}}}} + der 6 in dem Term +63\gdef\cloze#1{{\raisebox{-.05em}{\colorbox{none}{\color{transparent}{\large{$\displaystyle #1$}}}}}} \color{blue}+6-3.
Das +\gdef\cloze#1{{\raisebox{-.05em}{\colorbox{none}{\color{transparent}{\large{$\displaystyle #1$}}}}}} + der 8 in dem Term 17+812\gdef\cloze#1{{\raisebox{-.05em}{\colorbox{none}{\color{transparent}{\large{$\displaystyle #1$}}}}}} \color{blue}17+8-12.
Das +\gdef\cloze#1{{\raisebox{-.05em}{\colorbox{none}{\color{transparent}{\large{$\displaystyle #1$}}}}}} + vor der Klammer im Term +(5618)\gdef\cloze#1{{\raisebox{-.05em}{\colorbox{none}{\color{transparent}{\large{$\displaystyle #1$}}}}}} \color{blue}{+(56-18)}.
Bei 15:3\gdef\cloze#1{{\raisebox{-.05em}{\colorbox{none}{\color{transparent}{\large{$\displaystyle #1$}}}}}} \color{Blue}{15:3} das :\gdef\cloze#1{{\raisebox{-.05em}{\colorbox{none}{\color{transparent}{\large{$\displaystyle #1$}}}}}} : Zeichen.
Die \gdef\cloze#1{{\raisebox{-.05em}{\colorbox{none}{\color{transparent}{\large{$\displaystyle #1$}}}}}} \cdot Zeichen zwischen den Variablen def\gdef\cloze#1{{\raisebox{-.05em}{\colorbox{none}{\color{transparent}{\large{$\displaystyle #1$}}}}}} \color{Blue}{d\cdot e\cdot f}.
Im Term 34b+13\gdef\cloze#1{{\raisebox{-.05em}{\colorbox{none}{\color{transparent}{\large{$\displaystyle #1$}}}}}} \color{blue}{34\cdot b+13} das \gdef\cloze#1{{\raisebox{-.05em}{\colorbox{none}{\color{transparent}{\large{$\displaystyle #1$}}}}}} \cdot Zeichen.
Zwischen den Klammern das \gdef\cloze#1{{\raisebox{-.05em}{\colorbox{none}{\color{transparent}{\large{$\displaystyle #1$}}}}}} \cdot Zeichen in (1+x)(2x+2)\gdef\cloze#1{{\raisebox{-.05em}{\colorbox{none}{\color{transparent}{\large{$\displaystyle #1$}}}}}} \color{Blue}{(1+x)\cdot(2x+2)}.
2
Schreibe diese Terme nur mit den notwendigen Vorzeichen und Rechenzeichen auf.
  • 1k\gdef\cloze#1{{\raisebox{-.05em}{\colorbox{none}{\color{transparent}{\large{$\displaystyle #1$}}}}}} -1\cdot k
  • +4m\gdef\cloze#1{{\raisebox{-.05em}{\colorbox{none}{\color{transparent}{\large{$\displaystyle #1$}}}}}} +4\cdot m
  • +1512x\gdef\cloze#1{{\raisebox{-.05em}{\colorbox{none}{\color{transparent}{\large{$\displaystyle #1$}}}}}} +15-12\cdot x
  • +1a+1b+1c\gdef\cloze#1{{\raisebox{-.05em}{\colorbox{none}{\color{transparent}{\large{$\displaystyle #1$}}}}}} +1\cdot a+1\cdot b+1\cdot c
  • 17c+12df\gdef\cloze#1{{\raisebox{-.05em}{\colorbox{none}{\color{transparent}{\large{$\displaystyle #1$}}}}}} -17\cdot c+12\cdot d\cdot f
  • +2(+4c3d)\gdef\cloze#1{{\raisebox{-.05em}{\colorbox{none}{\color{transparent}{\large{$\displaystyle #1$}}}}}} +2\cdot (+4\cdot c-3\cdot d)
  • +2a+1b+4d6g\gdef\cloze#1{{\raisebox{-.05em}{\colorbox{none}{\color{transparent}{\large{$\displaystyle #1$}}}}}} +2\cdot a\cdot +1\cdot b+4\cdot d-6\cdot g
Lösung2
a) 1k\gdef\cloze#1{{\raisebox{-.05em}{\colorbox{none}{\color{transparent}{\large{$\displaystyle #1$}}}}}} -1k
b) 4m\gdef\cloze#1{{\raisebox{-.05em}{\colorbox{none}{\color{transparent}{\large{$\displaystyle #1$}}}}}} 4m
c) 1512x\gdef\cloze#1{{\raisebox{-.05em}{\colorbox{none}{\color{transparent}{\large{$\displaystyle #1$}}}}}} 15-12x
d) a+b+c\gdef\cloze#1{{\raisebox{-.05em}{\colorbox{none}{\color{transparent}{\large{$\displaystyle #1$}}}}}} a+b+c
e) 17c+12df\gdef\cloze#1{{\raisebox{-.05em}{\colorbox{none}{\color{transparent}{\large{$\displaystyle #1$}}}}}} -17c+12df
f) 2(4c3d)\gdef\cloze#1{{\raisebox{-.05em}{\colorbox{none}{\color{transparent}{\large{$\displaystyle #1$}}}}}} 2(4c-3d)
g) 2a+b+4d6g\gdef\cloze#1{{\raisebox{-.05em}{\colorbox{none}{\color{transparent}{\large{$\displaystyle #1$}}}}}} 2a+b+4d-6g
3
Schreibe die Divisionsaufgaben als Brüche und kürze sie so weit wie möglich.
  • 15x:3\gdef\cloze#1{{\raisebox{-.05em}{\colorbox{none}{\color{transparent}{\large{$\displaystyle #1$}}}}}} 15x:3
  • 123e:12e\gdef\cloze#1{{\raisebox{-.05em}{\colorbox{none}{\color{transparent}{\large{$\displaystyle #1$}}}}}} 123e:12e
  • 12:4x\gdef\cloze#1{{\raisebox{-.05em}{\colorbox{none}{\color{transparent}{\large{$\displaystyle #1$}}}}}} 12:4x
  • 72x3y:8xy\gdef\cloze#1{{\raisebox{-.05em}{\colorbox{none}{\color{transparent}{\large{$\displaystyle #1$}}}}}} 72x^{3}y:8xy
  • 32z3:4z9\gdef\cloze#1{{\raisebox{-.05em}{\colorbox{none}{\color{transparent}{\large{$\displaystyle #1$}}}}}} 32z^{3}:4z^{9}
a) 15x3=515x13=5x\gdef\cloze#1{{\raisebox{-.05em}{\colorbox{none}{\color{transparent}{\large{$\displaystyle #1$}}}}}} \frac{15x}{3} = \frac{^{5}\cancel{15}x}{_{1}\cancel{3}} = \underline{5x}
b) 123e12e=41123e412e=414\gdef\cloze#1{{\raisebox{-.05em}{\colorbox{none}{\color{transparent}{\large{$\displaystyle #1$}}}}}} \frac{123e}{12e} = \frac{^{41}\cancel{123}\cancel{e}}{_{4}\cancel{12}\cancel{e}}= \underline{\frac{41}{4}}
c) 124x=31214x=3x\gdef\cloze#1{{\raisebox{-.05em}{\colorbox{none}{\color{transparent}{\large{$\displaystyle #1$}}}}}} \frac{12}{4x} = \frac{^{3}\cancel{12}}{_{1}\cancel{4}x}= \underline{\frac{3}{x}}
d) 72xxxy8xy=972xxxy18xy=9x2\gdef\cloze#1{{\raisebox{-.05em}{\colorbox{none}{\color{transparent}{\large{$\displaystyle #1$}}}}}} \frac{72xxxy}{8xy} = \frac{^{9}\cancel{72}\cancel{x}xx\cancel{y} }{_{1}\cancel{8}\cancel{x}\cancel{y}}= \underline{9x^{2}}
e) 32zzz4zzzzzzzzz=832zzz18zzzzzzzzz=8z6\gdef\cloze#1{{\raisebox{-.05em}{\colorbox{none}{\color{transparent}{\large{$\displaystyle #1$}}}}}} \frac{32zzz}{4zzzzzzzzz} = \frac{^{8}\cancel{32}\cancel{z}\cancel{z}\cancel{z}}{_{1}\cancel{8}\cancel{z}\cancel{z}\cancel{z}zzzzzz}= \underline{\frac{8}{z^{6}}}
4
Löse erst die Klammern auf und vereinfache danach so weit wie möglich.
  • 4+(a+5)\gdef\cloze#1{{\raisebox{-.05em}{\colorbox{none}{\color{transparent}{\large{$\displaystyle #1$}}}}}} 4+(a+5)
  • 12b+(89b)\gdef\cloze#1{{\raisebox{-.05em}{\colorbox{none}{\color{transparent}{\large{$\displaystyle #1$}}}}}} 12b+(-8-9b)
  • 5c(6c17)\gdef\cloze#1{{\raisebox{-.05em}{\colorbox{none}{\color{transparent}{\large{$\displaystyle #1$}}}}}} 5c-(6c-17)
  • 9d(518d)\gdef\cloze#1{{\raisebox{-.05em}{\colorbox{none}{\color{transparent}{\large{$\displaystyle #1$}}}}}} 9d-(-5-18d)
  • 12e+(14e+89e)\gdef\cloze#1{{\raisebox{-.05em}{\colorbox{none}{\color{transparent}{\large{$\displaystyle #1$}}}}}} 12e+(-14e +8-9e)
  • 15+(5f+377x)14x\gdef\cloze#1{{\raisebox{-.05em}{\colorbox{none}{\color{transparent}{\large{$\displaystyle #1$}}}}}} 15+(-5f +37-7x) -14x
  • 18+12g+(34+8g14)\gdef\cloze#1{{\raisebox{-.05em}{\colorbox{none}{\color{transparent}{\large{$\displaystyle #1$}}}}}} 18+12g+(-34 +8g-14)
  • 20+2h(4h+1776h)\gdef\cloze#1{{\raisebox{-.05em}{\colorbox{none}{\color{transparent}{\large{$\displaystyle #1$}}}}}} 20+2h-(-4h +17-76h)
  • 12,5i+(19,518,4i)+22,8\gdef\cloze#1{{\raisebox{-.05em}{\colorbox{none}{\color{transparent}{\large{$\displaystyle #1$}}}}}} 12{,}5i+(19{,}5-18{,}4i)+22{,}8
  • 7,8j(11,24,5j)+12,3\gdef\cloze#1{{\raisebox{-.05em}{\colorbox{none}{\color{transparent}{\large{$\displaystyle #1$}}}}}} 7{,}8j-(11{,}2-4{,}5j)+12{,}3
  • 120k+640+(340k500)\gdef\cloze#1{{\raisebox{-.05em}{\colorbox{none}{\color{transparent}{\large{$\displaystyle #1$}}}}}} 120k+640+(340k-500)
  • (450l780)810l+950\gdef\cloze#1{{\raisebox{-.05em}{\colorbox{none}{\color{transparent}{\large{$\displaystyle #1$}}}}}} -(450l-780) -810l+950
  • (87m+286)+(84m+345)\gdef\cloze#1{{\raisebox{-.05em}{\colorbox{none}{\color{transparent}{\large{$\displaystyle #1$}}}}}} -(87m+286) + (-84m +345)
  • 2+(17n+13)+3n(79n+14)\gdef\cloze#1{{\raisebox{-.05em}{\colorbox{none}{\color{transparent}{\large{$\displaystyle #1$}}}}}} 2+(17n+13) +3n-(-79n+14)
Lösung4
a) 9+a\gdef\cloze#1{{\raisebox{-.05em}{\colorbox{none}{\color{transparent}{\large{$\displaystyle #1$}}}}}} 9+a                 \gdef\cloze#1{{\raisebox{-.05em}{\colorbox{none}{\color{transparent}{\large{$\displaystyle #1$}}}}}} \;\;\;\;\;\;\;\;                 \gdef\cloze#1{{\raisebox{-.05em}{\colorbox{none}{\color{transparent}{\large{$\displaystyle #1$}}}}}} \;\;\;\;\;\;\;\; b) 83b\gdef\cloze#1{{\raisebox{-.05em}{\colorbox{none}{\color{transparent}{\large{$\displaystyle #1$}}}}}} -8-3b                 \gdef\cloze#1{{\raisebox{-.05em}{\colorbox{none}{\color{transparent}{\large{$\displaystyle #1$}}}}}} \;\;\;\;\;\;\;\;                 \gdef\cloze#1{{\raisebox{-.05em}{\colorbox{none}{\color{transparent}{\large{$\displaystyle #1$}}}}}} \;\;\;\;\;\;\;\; c)+17c\gdef\cloze#1{{\raisebox{-.05em}{\colorbox{none}{\color{transparent}{\large{$\displaystyle #1$}}}}}} +17-c                 \gdef\cloze#1{{\raisebox{-.05em}{\colorbox{none}{\color{transparent}{\large{$\displaystyle #1$}}}}}} \;\;\;\;\;\;\;\;                 \gdef\cloze#1{{\raisebox{-.05em}{\colorbox{none}{\color{transparent}{\large{$\displaystyle #1$}}}}}} \;\;\;\;\;\;\;\; d)+5+27d\gdef\cloze#1{{\raisebox{-.05em}{\colorbox{none}{\color{transparent}{\large{$\displaystyle #1$}}}}}} +5+27d
e) +811e\gdef\cloze#1{{\raisebox{-.05em}{\colorbox{none}{\color{transparent}{\large{$\displaystyle #1$}}}}}} +8-11e                 \gdef\cloze#1{{\raisebox{-.05em}{\colorbox{none}{\color{transparent}{\large{$\displaystyle #1$}}}}}} \;\;\;\;\;\;\;\;     \gdef\cloze#1{{\raisebox{-.05em}{\colorbox{none}{\color{transparent}{\large{$\displaystyle #1$}}}}}} \;\; f) 525f21x\gdef\cloze#1{{\raisebox{-.05em}{\colorbox{none}{\color{transparent}{\large{$\displaystyle #1$}}}}}} 52-5f-21x                 \gdef\cloze#1{{\raisebox{-.05em}{\colorbox{none}{\color{transparent}{\large{$\displaystyle #1$}}}}}} \;\;\;\;\;\;\;\; g) 30+20g\gdef\cloze#1{{\raisebox{-.05em}{\colorbox{none}{\color{transparent}{\large{$\displaystyle #1$}}}}}} -30+20g                 \gdef\cloze#1{{\raisebox{-.05em}{\colorbox{none}{\color{transparent}{\large{$\displaystyle #1$}}}}}} \;\;\;\;\;\;\;\;       \gdef\cloze#1{{\raisebox{-.05em}{\colorbox{none}{\color{transparent}{\large{$\displaystyle #1$}}}}}} \;\;\; h) 3+82h\gdef\cloze#1{{\raisebox{-.05em}{\colorbox{none}{\color{transparent}{\large{$\displaystyle #1$}}}}}} 3+82h
i) 42,35,9i\gdef\cloze#1{{\raisebox{-.05em}{\colorbox{none}{\color{transparent}{\large{$\displaystyle #1$}}}}}} 42{,}3-5{,}9i                 \gdef\cloze#1{{\raisebox{-.05em}{\colorbox{none}{\color{transparent}{\large{$\displaystyle #1$}}}}}} \;\;\;\;\;\;\;\; j) 1,1+12,8j\gdef\cloze#1{{\raisebox{-.05em}{\colorbox{none}{\color{transparent}{\large{$\displaystyle #1$}}}}}} 1{,}1+12{,}8j                 \gdef\cloze#1{{\raisebox{-.05em}{\colorbox{none}{\color{transparent}{\large{$\displaystyle #1$}}}}}} \;\;\;\;\;\;\;\;       \gdef\cloze#1{{\raisebox{-.05em}{\colorbox{none}{\color{transparent}{\large{$\displaystyle #1$}}}}}} \;\;\; k) 140+460k\gdef\cloze#1{{\raisebox{-.05em}{\colorbox{none}{\color{transparent}{\large{$\displaystyle #1$}}}}}} 140+460k                 \gdef\cloze#1{{\raisebox{-.05em}{\colorbox{none}{\color{transparent}{\large{$\displaystyle #1$}}}}}} \;\;\;\;\;\;\;\;       \gdef\cloze#1{{\raisebox{-.05em}{\colorbox{none}{\color{transparent}{\large{$\displaystyle #1$}}}}}} \;\;\; l) 17301260l\gdef\cloze#1{{\raisebox{-.05em}{\colorbox{none}{\color{transparent}{\large{$\displaystyle #1$}}}}}} 1730-1260l

m) 87m28684m+345=286+34587m84m\gdef\cloze#1{{\raisebox{-.05em}{\colorbox{none}{\color{transparent}{\large{$\displaystyle #1$}}}}}} -87m-286-84m+345 = -286+345-87m-84m
=+230171m\gdef\cloze#1{{\raisebox{-.05em}{\colorbox{none}{\color{transparent}{\large{$\displaystyle #1$}}}}}} =\underline{+230-171m}

n) +2+17n+13+3n+79n14=2+1314+17n+3n+79n\gdef\cloze#1{{\raisebox{-.05em}{\colorbox{none}{\color{transparent}{\large{$\displaystyle #1$}}}}}} +2+17n+13+3n+79n-14= 2+13-14+17n+3n+79n
=+1+99n\gdef\cloze#1{{\raisebox{-.05em}{\colorbox{none}{\color{transparent}{\large{$\displaystyle #1$}}}}}} =\underline{+1+99n}
5
Löse die Klammern durch Ausmultiplizieren auf.
  • 3(a+b)\gdef\cloze#1{{\raisebox{-.05em}{\colorbox{none}{\color{transparent}{\large{$\displaystyle #1$}}}}}} 3\cdot(a+b)
  • 5(r+t)\gdef\cloze#1{{\raisebox{-.05em}{\colorbox{none}{\color{transparent}{\large{$\displaystyle #1$}}}}}} 5(r+t)
  • 7(x2z)\gdef\cloze#1{{\raisebox{-.05em}{\colorbox{none}{\color{transparent}{\large{$\displaystyle #1$}}}}}} 7(-x-2z)
  • (15x12y)2\gdef\cloze#1{{\raisebox{-.05em}{\colorbox{none}{\color{transparent}{\large{$\displaystyle #1$}}}}}} (15x-12y)\cdot2
  • (2x+7y)3\gdef\cloze#1{{\raisebox{-.05em}{\colorbox{none}{\color{transparent}{\large{$\displaystyle #1$}}}}}} (-2x+7y)3
  • 8y(3+4k)\gdef\cloze#1{{\raisebox{-.05em}{\colorbox{none}{\color{transparent}{\large{$\displaystyle #1$}}}}}} 8y\cdot(-3+4k)
  • 9y(5z9)\gdef\cloze#1{{\raisebox{-.05em}{\colorbox{none}{\color{transparent}{\large{$\displaystyle #1$}}}}}} 9y(-5z-9)
  • 4x(10p+9z+13)\gdef\cloze#1{{\raisebox{-.05em}{\colorbox{none}{\color{transparent}{\large{$\displaystyle #1$}}}}}} 4x\cdot(10p+9z+13)
  • 6x(4x2k+10)\gdef\cloze#1{{\raisebox{-.05em}{\colorbox{none}{\color{transparent}{\large{$\displaystyle #1$}}}}}} 6x(4x-2k+10)
  • (23u42x17z)2x\gdef\cloze#1{{\raisebox{-.05em}{\colorbox{none}{\color{transparent}{\large{$\displaystyle #1$}}}}}} (23u-42x-17z)\cdot2x
  • 14wx+(3w+9t7x)4x\gdef\cloze#1{{\raisebox{-.05em}{\colorbox{none}{\color{transparent}{\large{$\displaystyle #1$}}}}}} 14wx+(-3w+9t-7x)4x
  • 3z(a+12b+13)19z\gdef\cloze#1{{\raisebox{-.05em}{\colorbox{none}{\color{transparent}{\large{$\displaystyle #1$}}}}}} 3z\cdot(-a+12b+13)-19z
  • 4b(12a+3)+a(24b17)\gdef\cloze#1{{\raisebox{-.05em}{\colorbox{none}{\color{transparent}{\large{$\displaystyle #1$}}}}}} 4b(12a+3)+a(24b-17)
  • 8x(2x+7)+3(12x215x)\gdef\cloze#1{{\raisebox{-.05em}{\colorbox{none}{\color{transparent}{\large{$\displaystyle #1$}}}}}} 8x(-2x+7)+3(12x^{2}-15x)
Lösung5
a) 3a+3b\gdef\cloze#1{{\raisebox{-.05em}{\colorbox{none}{\color{transparent}{\large{$\displaystyle #1$}}}}}} \underline{3a+3b}
b) 5r+5t\gdef\cloze#1{{\raisebox{-.05em}{\colorbox{none}{\color{transparent}{\large{$\displaystyle #1$}}}}}} \underline{5r+5t}
c) 7x14z\gdef\cloze#1{{\raisebox{-.05em}{\colorbox{none}{\color{transparent}{\large{$\displaystyle #1$}}}}}} \underline{-7x-14z}
d) 30x24y\gdef\cloze#1{{\raisebox{-.05em}{\colorbox{none}{\color{transparent}{\large{$\displaystyle #1$}}}}}} \underline{30x-24y}
e) 6x+21y\gdef\cloze#1{{\raisebox{-.05em}{\colorbox{none}{\color{transparent}{\large{$\displaystyle #1$}}}}}} \underline{-6x+21y}
f) 24y+32ky\gdef\cloze#1{{\raisebox{-.05em}{\colorbox{none}{\color{transparent}{\large{$\displaystyle #1$}}}}}} \underline{-24y+32ky}
g) 45yz81y\gdef\cloze#1{{\raisebox{-.05em}{\colorbox{none}{\color{transparent}{\large{$\displaystyle #1$}}}}}} \underline{-45yz-81y}
h) 40px+36xz+52x\gdef\cloze#1{{\raisebox{-.05em}{\colorbox{none}{\color{transparent}{\large{$\displaystyle #1$}}}}}} \underline{40px+36xz+52x}
i) 24x212kx+60x\gdef\cloze#1{{\raisebox{-.05em}{\colorbox{none}{\color{transparent}{\large{$\displaystyle #1$}}}}}} \underline{24x^{2}-12kx+60x}
j)+46ux84x234xz\gdef\cloze#1{{\raisebox{-.05em}{\colorbox{none}{\color{transparent}{\large{$\displaystyle #1$}}}}}} \underline{+46ux-84x^{2}-34xz}
k) +14wx12wx+36tx28x2=2wx+36tx28x2\gdef\cloze#1{{\raisebox{-.05em}{\colorbox{none}{\color{transparent}{\large{$\displaystyle #1$}}}}}} \color{blue}{+14wx}\color{black} \color{blue}{-12wx}\color{black}+36tx-28x^{2} =\underline{2wx+36tx-28x^{2}}
l)3az+36bz+39z19z=3az+36bz+20z\gdef\cloze#1{{\raisebox{-.05em}{\colorbox{none}{\color{transparent}{\large{$\displaystyle #1$}}}}}} -3az+36bz\color{blue}{+39z}\color{black} \color{blue}{-19z}\color{black} =\underline{-3az+36bz+20z}
m)48ab+12b+24ab17a=72ab17a+12b\gdef\cloze#1{{\raisebox{-.05em}{\colorbox{none}{\color{transparent}{\large{$\displaystyle #1$}}}}}} \color{blue}{48ab}\color{black} {+12b}\color{blue}{+24ab}\color{black}-17a\color{black} =\underline{72ab-17a+12b}
n)16x2+56x+36x245x=20x2+11x\gdef\cloze#1{{\raisebox{-.05em}{\colorbox{none}{\color{transparent}{\large{$\displaystyle #1$}}}}}} \color{blue}{-16x^{2}}\color{red} {+56x}\color{blue}{+36x^{2}}\color{red}-45x\color{black} =\underline{20x^{2}+11x}
6
Löse die Klammern durch Ausmultiplizieren auf. Achte auf die Vorzeichen!
  • 4(4a+2b)\gdef\cloze#1{{\raisebox{-.05em}{\colorbox{none}{\color{transparent}{\large{$\displaystyle #1$}}}}}} -4\cdot(4a+2b)
  • 4(2r+3t)\gdef\cloze#1{{\raisebox{-.05em}{\colorbox{none}{\color{transparent}{\large{$\displaystyle #1$}}}}}} -4(2r+3t)
  • 7(u8z)\gdef\cloze#1{{\raisebox{-.05em}{\colorbox{none}{\color{transparent}{\large{$\displaystyle #1$}}}}}} -7(-u-8z)
  • (5w6y)(4)\gdef\cloze#1{{\raisebox{-.05em}{\colorbox{none}{\color{transparent}{\large{$\displaystyle #1$}}}}}} (5w-6y)\cdot(-4)
  • (2x7y)(3y)\gdef\cloze#1{{\raisebox{-.05em}{\colorbox{none}{\color{transparent}{\large{$\displaystyle #1$}}}}}} (-2x-7y)\cdot(-3y)
  • 3y(3y+6k)\gdef\cloze#1{{\raisebox{-.05em}{\colorbox{none}{\color{transparent}{\large{$\displaystyle #1$}}}}}} -3y\cdot(-3y+6k)
  • 9y(5z9)+18y15yz\gdef\cloze#1{{\raisebox{-.05em}{\colorbox{none}{\color{transparent}{\large{$\displaystyle #1$}}}}}} -9y(-5z-9)+18y-15yz
  • 12px7x(4p+3z+9)\gdef\cloze#1{{\raisebox{-.05em}{\colorbox{none}{\color{transparent}{\large{$\displaystyle #1$}}}}}} 12px-7x\cdot(4p+3z+9)
  • 7x(4x2k+11)+4x278x\gdef\cloze#1{{\raisebox{-.05em}{\colorbox{none}{\color{transparent}{\large{$\displaystyle #1$}}}}}} -7x(4x-2k+11)+4x^{2}-78x
  • (123u65x77z+46v)(2x)\gdef\cloze#1{{\raisebox{-.05em}{\colorbox{none}{\color{transparent}{\large{$\displaystyle #1$}}}}}} (123u-65x-77z+46v)\cdot(-2x)
  • 84wx+(33w+19t27x)(3x)\gdef\cloze#1{{\raisebox{-.05em}{\colorbox{none}{\color{transparent}{\large{$\displaystyle #1$}}}}}} 84wx+(-33w+19t-27x)\cdot(-3x)
  • 2z(88a25b+3)19z+9bz\gdef\cloze#1{{\raisebox{-.05em}{\colorbox{none}{\color{transparent}{\large{$\displaystyle #1$}}}}}} -2z\cdot(88a-25b+3)-19z+9bz
  • 4b(11a+7)a(69b78)\gdef\cloze#1{{\raisebox{-.05em}{\colorbox{none}{\color{transparent}{\large{$\displaystyle #1$}}}}}} -4b(11a+7)-a(69b-78)
  • z(9z+45)+(15z252z)(3)\gdef\cloze#1{{\raisebox{-.05em}{\colorbox{none}{\color{transparent}{\large{$\displaystyle #1$}}}}}} -z(-9z+45)+(15z^{2}-52z)\cdot(-3)
Lösung6
a) 16a8b\gdef\cloze#1{{\raisebox{-.05em}{\colorbox{none}{\color{transparent}{\large{$\displaystyle #1$}}}}}} \underline{-16a-8b}
b) 8r12t\gdef\cloze#1{{\raisebox{-.05em}{\colorbox{none}{\color{transparent}{\large{$\displaystyle #1$}}}}}} \underline{-8r-12t}
c) +7u+56z\gdef\cloze#1{{\raisebox{-.05em}{\colorbox{none}{\color{transparent}{\large{$\displaystyle #1$}}}}}} \underline{+7u+56z}
d) 20w+24y\gdef\cloze#1{{\raisebox{-.05em}{\colorbox{none}{\color{transparent}{\large{$\displaystyle #1$}}}}}} \underline{-20w+24y}
e) 6xy+21y2\gdef\cloze#1{{\raisebox{-.05em}{\colorbox{none}{\color{transparent}{\large{$\displaystyle #1$}}}}}} \underline{6xy+21y^{2}}
f) 9y218ky\gdef\cloze#1{{\raisebox{-.05em}{\colorbox{none}{\color{transparent}{\large{$\displaystyle #1$}}}}}} \underline{9y^{2}-18ky}
g) 45yz+81y+18y15yz=99y+30yz\gdef\cloze#1{{\raisebox{-.05em}{\colorbox{none}{\color{transparent}{\large{$\displaystyle #1$}}}}}} \color{blue}{45yz}\color{red} {+81y}\color{red}{+18y}\color{blue}-15yz\color{black} =\underline{99y+30yz}
h) 12px28px21xz63x=16px63x21xz\gdef\cloze#1{{\raisebox{-.05em}{\colorbox{none}{\color{transparent}{\large{$\displaystyle #1$}}}}}} \color{blue}{12px}\color{blue} {-28px}\color{black} -21xz-63x=\underline{-16px-63x-21xz}
i)28x214kx77x+4x278x=14kx24x2155x\gdef\cloze#1{{\raisebox{-.05em}{\colorbox{none}{\color{transparent}{\large{$\displaystyle #1$}}}}}} \color{blue}-28x^{2}\color{black}-14kx\color{red}-77x \color{blue}{+4x^{2}}\color{red}-78x\color{black} =\underline{-14kx-24x^{2}-155x}
j)246ux+130x2+154xz92vx\gdef\cloze#1{{\raisebox{-.05em}{\colorbox{none}{\color{transparent}{\large{$\displaystyle #1$}}}}}} \underline{-246ux+130x^{2}+154xz-92vx}
k) 84wx+99wx57tx+81x2=57tx+183wx+81x2\gdef\cloze#1{{\raisebox{-.05em}{\colorbox{none}{\color{transparent}{\large{$\displaystyle #1$}}}}}} \color{blue}84wx +99wx\color{black} -57tx+81x^{2}=\underline{-57tx+183wx+81x^{2}}
l) 176az+50bz6z19z+9bz=176az+59bz25z\gdef\cloze#1{{\raisebox{-.05em}{\colorbox{none}{\color{transparent}{\large{$\displaystyle #1$}}}}}} -176az\color{blue}{+50bz}\color{red}-6z-19z \color{blue}{+9bz}\color{black} =\underline{-176az+59bz-25z}
m)44ab28b69ab+78a=113ab+78a28b\gdef\cloze#1{{\raisebox{-.05em}{\colorbox{none}{\color{transparent}{\large{$\displaystyle #1$}}}}}} \color{blue}{-44ab}\color{black} {-28b}\color{blue}{-69ab}\color{black}+78a\color{black} =\underline{-113ab+78a-28b}
n)+9z245z45z2+156z=36z2+111z\gdef\cloze#1{{\raisebox{-.05em}{\colorbox{none}{\color{transparent}{\large{$\displaystyle #1$}}}}}} \color{blue}{+9z^{2}}\color{red} {-45z}\color{blue}{-45z^{2}}\color{red}+156z\color{black} =\underline{-36z^{2}+111z}
x