• Verhalten im Unendlichen
  • MNWeG
  • 24.04.2023
  • Mathematik
  • Funktionen
  • 11
  • Arbeitsblatt
Um die Lizenzinformationen zu sehen, klicken Sie bitte den gewünschten Inhalt an.
Reflektionsfragen

Bevor du mit den Aufgaben beginnst, solltest du kurz über die folgenden Fragen nachdenken. Wenn du zu einer Frage keine Idee hast, lies noch einmal in der INFO nach, sprich mit anderen Lernpartner:innen darüber oder frage deine Lernbegleitung.



Warum ist es nicht möglich, eine Funktion vollständig zu zeichnen?

Was bedeutet der Ausdruck ?

Welcher Teil eines Polynoms wird genauer betrachtet, um das Verhalten einer ganzrationalen Funktion im Unendlichen zu untersuchen?

Wie würde die Aussage „Der Graph kommt von links unten und läuft nach rechts oben“ mathematisch ausgedrückt werden?

1
Beschreibe das Verhalten der Funktion im Unendlichen.

a)

−3−2−1123x−11yoriginOf(x)

b)

−3−2−1123x−11yoriginOf(x)
Für gilt .
Für gilt .
Für gilt .
Für gilt .
2
Untersuche das Verhalten der Funktion im Unendlichen, ohne die Funktion zu zeichnen.

a)

b)

c)

a) Für gilt .
Für gilt .

b) Für gilt .
Für gilt .

c) Für gilt .
Für gilt .
3
Jeweils zwei Funktionen zeigen das gleiche Verhalten im Unendlichen. Ordne sie einander zu.
4
Die Funktion hat die Nullstellen
und . Für das Verhalten der Funktion im Unendlichen gilt:
Für gilt .
Für gilt .
a) Zeichne einen möglichen Verlauf des Graphen.
b) Gib an, welche Besonderheit eine der beiden Nullstellen aufweist.
−4−3−2−1123x−2−112yoriginOf(x)
In einer der Nullstellen schneidet die Funktion die -Achse nicht, sondern berührt sie nur.
5
Zeige durch Untersuchen des Verhaltens im Unendlichen, dass der dargestellte Ausschnitt der Funktion den Verlauf nicht gut repräsentiert.
−3−2−1123x−112yoriginOf(x)
Für gilt .
Für gilt .
Im dargestellten Ausschnitt wirkt es so als würde gelten:
gilt
In der Abbildung fehlt der Bereich, in dem deutlich wird, dass die Funktion für gegen nach strebt.
6
Gegeben ist die Funktion mit ; . Gib jeweils ein Wertepaar an, sodass die Aussage stimmt.

b) Für gilt .

Für gilt .

a) Für gilt .

Für gilt .

a) z. B. ,
b) z. B. ,
x